Advertisement

Microstructure, Dielectric and Piezoelectric Properties of (1 − x)(Na0.52K0.443Li0.037)(Nb0.883Sb0.08Ta0.037)O3 − x(Sr0.95Ca0.05)ZrO3 Ceramics

  • Ju-Hyun YooEmail author
  • Gwang-Min Lee
Regular Paper
  • 17 Downloads

Abstract

In this paper, in order to develop the composition ceramics for piezoelectric actuator. (1 − x)(Na0.52K0.443Li0.037)(Nb0.883Sb0.08Ta0.037)O3 − x(Sr0.95Ca0.05)ZrO3 ceramics were sintered at 1020 °C by the conventional solid-state method. The effects of (Sr0.95Ca0.05)ZrO3 substitution on their microstructure and piezoelectric properties were systematically investigated. The orthorhombic-tetragonal coexistence phase has been found in the ceramics with x = 0.01, 0.015 and x = 0.02. The maximum value of d33 was 322 pC/N at x = 0.025 composition ceramics with the rhombohedral phase. The (Sr0.95Ca0.05)ZrO3 substitution increased the density and then aided the grain growth of specimens. When x = 0.01, the optimal physical properties of d33 = 254 pC/N, εr = 1096, kp = 0.46, and Qm = 156 were obtained, respectively, for piezoelectric actuator application.

Keywords

Piezoelectric actuator Sintering aids Electromechanical coupling factor Mechanical quality factor 

Notes

Acknowledgements

This paper was supported by the 2016 National Research Foundation of Korea (NRF) Fund.

References

  1. 1.
    G. Yiping, K. Ken-ichi, O. Hitoshi, Solid State Commun. 129, 279 (2004)CrossRefGoogle Scholar
  2. 2.
    S. Sang-Hoon, Y. Juhyun, L. Sang-Don, Ferroelectr. Lett. 41, 56 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Yuhyong, Y. Juhyun, L. Kabsoo, J. Alloys. Compd. 506, 17 (2010)CrossRefGoogle Scholar
  4. 4.
    Y. Juhyun, L. Kabsoo, Curr. Appl. Phys. 12, 798 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Minho, Y. Juhyun, J. Electroceram. 30, 66 (2013)CrossRefGoogle Scholar
  6. 6.
    P. Bomlai, N. Muensit, S.J. Milne, Procedia Eng. 32, 814 (2012)CrossRefGoogle Scholar
  7. 7.
    Y. Ming-Ru, H. Cheng-Shong, T. Cheng-Che, C. Sheng-Yuan, J. Alloys. Compd. 488, 169 (2009)CrossRefGoogle Scholar
  8. 8.
    P. Minho, Y. Juhyun, J. Electron. Mater. 41, 3095 (2012)CrossRefGoogle Scholar
  9. 9.
    C. Ren-Chuan, C. Sheng-Yuan, W. Yi-Peng, L. Yi-Fang, H. Cheng-Shong, Sens. Actuator A 136, 267 (2007)CrossRefGoogle Scholar
  10. 10.
    N. Jungrae, Y. Juhyun, J. Electroceram. 30, 139 (2013)CrossRefGoogle Scholar
  11. 11.
    Q. Shaohua, Z. Kongjun, P. Xuming, L. Jinsong, Q. Jingao, D. Jianzhou, Ceram. Int. 40, 4389 (2014)CrossRefGoogle Scholar
  12. 12.
    I.-H. Chan, C.-T. Sun, M.-P. Houng, S.-Y. Chu, Ceram. Int 37, 2061 (2011)CrossRefGoogle Scholar
  13. 13.
    Z. Ruzhong, L. Danya, F. Jian, L. Yi, L. Longtu, J. Alloys. Compd 476, 836 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Jang, Y. Li, J. Xing, W. Longtu, Q. Chen, Ceram. Int. 43, 2100 (2017)CrossRefGoogle Scholar
  15. 15.
    B. Wu, H. Wu, J. Wu, D. Xiao, J.P. Stephen, Chem. Soc. 138(47), 5459 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Rubio-Marcos, N. Razo-Pérez, J.F. Fernandez, A.C.S. Appl, Mater. Interfaces 7(41), 23080 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Wang, J. Wu, J. Zhu, A.C.S. Appl, Mater. Interfaces 6(9), 6177 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Qin, S. Zhang, ACS Appl. Mater. Interfaces 8(11), 7257 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringSemyung UniversityJecheonKorea

Personalised recommendations