Robust Fuzzy On–Off Synthesis Controller for Maximum Power Point Tracking of Wind Energy Conversion

  • Sami Kahla
  • Moussa Sedraoui
  • Mohcene Bechouat
  • Youcef Soufi
Regular Paper
  • 2 Downloads

Abstract

Due to the major discrepancy between the exigent demands regarding the electrical energy quality and the irregular nature of the wind, which is characterized by random and instantaneous speed variations, it is vital to determine the optimal operating point that maximizes the efficiency of the obtained electrical energy in the grid from wing generators. The present paper addressed the above-mentioned problem by introducing a fuzzy logic control system in the standard on–off control strategy. The purpose is to maximize the power point tracking of wind energy and to reduce the mechanical loads in which variable wind speed is considered. This idea has the ability to drive the conversion system to its optimal operating point, thereby solving the switching component problem (also referred to as the chattering problem) of the standard on–off control strategy. To examine the validity of the proposed idea, the obtained results are compared with those given by the standard on–off control strategy wherein our method can ensure a better dynamic behavior of the wind energy conversion system.

Keywords

Wind energy conversion system (WECS) Maximum power point tracking (MPPT) Standard and fuzzy on–off controller Induction generator (IG) 

Notes

Acknowledgements

The authors would like to thank the members of the Pervasive Artificial Intelligence (PAI) group of the Department of Informatics,University of Fribourg, Switzerland, for their valuable suggestions and comments that helped us to improve this paper. Special thanks to owed to Prof. Bat Hirsbrunner, Prof. Michèle Courant, Prof. Babouri Abdesselam, and Prof. Khettabi Riad.

References

  1. 1.
    A. Lokhriti, I. Salhi, S. Doubabiand, Y. Zidani, ISA Trans. 55, 406 (2012).  https://doi.org/10.1016/j.isatra.2012.11.002 Google Scholar
  2. 2.
    R. Saidur, M.R. Islam, N.A. Rahim, K.H. Solangi, Renew. Sustain. Energy Rev. 14, 1744 (2010).  https://doi.org/10.1016/j.rser.2010.03.007 CrossRefGoogle Scholar
  3. 3.
    K.C. Tseng, C.C. Huang, IEEE Trans. Ind. Electron. 61, 1311 (2013).  https://doi.org/10.1109/TIE.2013.2261036 CrossRefGoogle Scholar
  4. 4.
    F.D. Kanellos, N.D. Hatziargyriou, IEEE Trans. Energy Convers. 25, 1142 (2010).  https://doi.org/10.1109/tec.2010.2048216 CrossRefGoogle Scholar
  5. 5.
    M. Sedraoui, D. Boudjehem, Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226, 1274 (2012).  https://doi.org/10.1177/0959651812452480 CrossRefGoogle Scholar
  6. 6.
    W. Meng, Q. Yang, Y. Ying, Y. Sun, Z. Yang, Y. Sun, IEEE Trans. Energy Convers. 28, 716 (2013).  https://doi.org/10.1109/TEC.2013.2273357 CrossRefGoogle Scholar
  7. 7.
    J. Chen, C. Gong, IEEE Trans. Ind. Electron. 68, 4022 (2013).  https://doi.org/10.1109/TIE.2013.2284148 Google Scholar
  8. 8.
    S. Tunyasrirut, B. Wangsilabatra, C. Charumit, T. Suksri, Energy Procedia 9, 128 (2011).  https://doi.org/10.1016/j.egypro.2011.09.014 CrossRefGoogle Scholar
  9. 9.
    B. Sawetsakulanond, V. Kinnares, Energy 35, 4975 (2010).  https://doi.org/10.1016/j.energy.2010.08.027 CrossRefGoogle Scholar
  10. 10.
    J.M. Espi, J. Castello, IEEE Trans. Ind. Electron. 60, 919 (2012).  https://doi.org/10.1109/TIE.2012.2190370 CrossRefGoogle Scholar
  11. 11.
    A.M. Eltamaly, H.M. Farh, Electr. Power Syst. Res. 97, 144 (2013).  https://doi.org/10.1016/j.epsr.2013.01.001 CrossRefGoogle Scholar
  12. 12.
    I. Munteanu, A.I. Bractu, E. Ceanga, Handbook of Wind Power Systems (Springer, Berlin, 2013)Google Scholar
  13. 13.
    M.A. Abdullah, A.H.M. Yatim, C.W. Tan, R. Saidur, Renew. Sustain. Energy Rev. 16, 3220 (2012).  https://doi.org/10.1016/j.rser.2012.02.016 CrossRefGoogle Scholar
  14. 14.
    A.M. Knight, G.E. Peters, IEEE Trans. Energy Convers. 20, 459 (2005).  https://doi.org/10.1109/TEC.2005.847995 CrossRefGoogle Scholar
  15. 15.
    M. Nasiri, J. Milimonfared, S.H. Fathi, Energy Convers. Manag. 86, 892 (2014).  https://doi.org/10.1016/j.enconman.2014.06.055 CrossRefGoogle Scholar
  16. 16.
    S. Ganjefar, A. Ghassemi, M.M. Ahmadi, Energy 67, 444 (2014).  https://doi.org/10.1016/j.energy.2014.02.023 CrossRefGoogle Scholar
  17. 17.
    A. Chakraborty, Renew. Sustain. Energy Rev. 15, 1816 (2011).  https://doi.org/10.1016/j.rser.2010.12.005 CrossRefGoogle Scholar
  18. 18.
    M.J. Duran, F. Barrero, A. Pozo-ruz, F. Guzman, J. Fernandez, H. Guzman, IEEE Trans. Educ. 56, 174 (2012).  https://doi.org/10.1109/TE.2012.2207119 CrossRefGoogle Scholar
  19. 19.
    G.D. Moor, H.J. Beukes, IEEE 35th Annual Power Electronics Specialists Conference, 2044 (2004).  https://doi.org/10.1109/pesc.2004.1355432
  20. 20.
    J.W. Wingerden, A. Hulskamp, T. Barlas, I. Houtzager, H. Bersee, G. Van kuik, M. Verhaegen, IEEE Trans. Control Syst. Technol. 19, 284 (2010).  https://doi.org/10.1109/TCST.2010.2051810 CrossRefGoogle Scholar
  21. 21.
    B. Boukhezzar, L. Lupu, H. Siguerdidjane, M. Hand, Renew. Energy 32, 1273 (2006).  https://doi.org/10.1016/j.renene.2006.06.010 CrossRefGoogle Scholar
  22. 22.
    M. Aidoud, M. Sedraoui, A. Lachouri, A. Boualleg, J. Braz. Soc. Mech. Sci. Eng. 38, 2181 (2016).  https://doi.org/10.1007/s40430-015-0406-5 CrossRefGoogle Scholar
  23. 23.
    K. Ouari, M. Ouhrouche, T. Rekioua, N. Taib, J. Electr. Eng. 65, 333 (2015).  https://doi.org/10.2478/jee-2014-0055 Google Scholar
  24. 24.
    S.M. Kazraji, M.B.B. Sharifian, Adv. Electr. Electron. Eng. 13, 1 (2015).  https://doi.org/10.15598/aeee.v13i1.999 Google Scholar
  25. 25.
    S. Abdeddaim, A. Betka, S. Drid, M. Becherif, Energy Convers. Manag. 79, 281 (2013).  https://doi.org/10.1016/j.enconman.2013.12.003 CrossRefGoogle Scholar
  26. 26.
    S. Kahla, Y. Soufi, M. Sedraoui, M. Bechouat, Int. J. Hydrogen Energy 40, 13749 (2015).  https://doi.org/10.1016/j.ijhydene.2015.05.007 CrossRefGoogle Scholar
  27. 27.
    W.M. Lin, C.H. Hong, T.C. Ou, T.M. Chiu, Energy Convers. Manag. 52, 1244 (2010).  https://doi.org/10.1016/j.enconman.2010.09.020 CrossRefGoogle Scholar
  28. 28.
    M. Kesraoui, N. Korichi, A. Belkadi, Renew. Energy 36, 2655 (2010).  https://doi.org/10.1016/j.renene.2010.04.028 CrossRefGoogle Scholar
  29. 29.
    H.T. Jadhav, R. Roy, Int. J. Electr. Power Energy Syst. 49, 8 (2013).  https://doi.org/10.1016/j.ijepes.2012.11.020 CrossRefGoogle Scholar
  30. 30.
    B. Boukhezzar, H. Siguerdidjane, Energy Convers. Manag. 50, 885 (2009).  https://doi.org/10.1016/j.enconman.2009.01.011 CrossRefGoogle Scholar
  31. 31.
    C. Belfadel, S. Gherbi, M. Sdraoui, S. Moreau, G. Champenois, T. Allaoui, M.A. Denai, Electr. Power Syst. Res. 80, 230 (2010).  https://doi.org/10.1016/j.epsr.2009.09.002 CrossRefGoogle Scholar
  32. 32.
    K. Idjdarene, D. Rekioua, T. Rekioua, A. Tounzi, Analog Integr. Circuits Sig. Process. 69, 67 (2011).  https://doi.org/10.1007/s10470-011-9629-2 CrossRefGoogle Scholar
  33. 33.
    R. Datta, V.T. Ranganathan, IEEE Trans. Energy Convers. 17, 414 (2002).  https://doi.org/10.1109/TEC.2002.801993 CrossRefGoogle Scholar
  34. 34.
    R. Rocha, L.S.M. Filho, M.V. Bortolus, in Proceedings of the 44th IEEE Conference on Decision and Control, 7906 (2005).  https://doi.org/10.1109/cdc.2005.1583440
  35. 35.
    H. Liu, S. Li, J. Cao, G. Li, A. Alsaedi, F.E. Alsaadi, Neurocomputing 219, 422 (2017).  https://doi.org/10.1016/j.neucom.2016.09.050 CrossRefGoogle Scholar
  36. 36.
    Y. Pan, Y. Zhou, T. Sun, M.J. Er, Neurocomputing 99, 15 (2013).  https://doi.org/10.1016/j.neucom.2012.05.011 CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  • Sami Kahla
    • 1
  • Moussa Sedraoui
    • 1
  • Mohcene Bechouat
    • 1
  • Youcef Soufi
    • 2
  1. 1.Telecommunication LaboratoryUniversity 8 Mai 1945 of GuelmaGuelmaAlgeria
  2. 2.Labget LaboratoryUniversity of TebessaTébessaAlgeria

Personalised recommendations