Advertisement

Effect of Parasitic Capacitance on RF MEMS Switch OFF/ON Ratio

  • Deepak BansalEmail author
  • Khushbu Mehta
  • Anuroop Bajpai
  • Amit Kumar
  • Prem Kumar
  • Kamaljit Rangra
Regular Paper
  • 16 Downloads

Abstract

Radio frequency micro-electro-mechanical system (RF MEMS) switch is basic component for transponders used in communication system. Switch “OFF/ON” capacitance ratio plays major role in controlling signal to noise ratio. Theoretically, with high dielectric constant material or floating metal concept, capacitance ratio can be improved up to 2000 or even more. Whereas, in most of the practical cases, measured ratio is less than 200. In present paper, RF MEMS capacitive switch LCR parameters are extracted considering parasitic capacitance to explain the mismatch of measured results. Parasitic capacitance is independent from device overlap area. Parasitic capacitance is function of switch geometry and directly proportional to dielectric constant of the substrate material.

Keywords

Parasitic Capacitance ratio RF MEMS switch LCR parameter 

Notes

Acknowledgements

The authors would like to thanks Council of Scientific and Industrial Research (CSIR), India for providing financial support under project head MLP-105.

References

  1. 1.
    K. Najafi, Micropackaging technologies for integrated microsystems: applications to MEMS and MOEMS. Proc. SPIE 4979, 1–19 (2003)CrossRefGoogle Scholar
  2. 2.
    C. Goldsmith, D. Forehand, D. Scarbrough, Z. Peng, C. Palego, J. Hwang, J. Clevenger, Understanding and improving longevity in RF MEMS capacitive switches. Proc. SPIE 6884, 688403–688403-12 (2008)CrossRefGoogle Scholar
  3. 3.
    D. Bansal, A. Bajpai, P. Kumar, M. Kaur, K. Rangra, Fabrication and analysis of radiofrequency MEMS series capacitive single-pole double-throw switch. J. Micro/Nanolithography, MEMS, MOEMS 15(4), 045001 (2016)CrossRefGoogle Scholar
  4. 4.
    A.Q. Liu, W. Palei, M. Tang, A. Alphones, Single-pole-four-throw switch using high-aspect-ratio lateral switches. Electron. Lett. 40(18), 1125 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Iannacci, M. Huhn, C. Tschoban, H. Pötter, RF-MEMS technology for future (5G) mobile and high-frequency applications: reconfigurable 8-bit power attenuator tested up to 110 GHz. IEEE Electron Device Lett. 37(12), 1646–1649 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.J. Guo, N.E. McGruer, G.G. Adams, Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. J. Micromech. Microeng. 17(9), 1899–1909 (2007)CrossRefGoogle Scholar
  7. 7.
    A.S. Khan, T. Shanmuganantham, Design and analysis of RF MEMS cantilever switches for parameter enhancement. Trans. Electr. Electron. Mater. 0123456789, 1–9 (2018)Google Scholar
  8. 8.
    D. Bansal, A. Kumar, A. Sharma, P. Kumar, K.J. Rangra, Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Microsyst. Technol. 20(2), 337–340 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Bansal, A. Bajpai, P. Kumar, A. Kumar, M. Kaur, K. Rangra, Design and fabrication of a reduced stiction radio frequency MEMS switch. J. Micro/Nanolithography, MEMS, MOEMS 14(3), 035002 (2015)CrossRefGoogle Scholar
  10. 10.
    C.D. Patel, G.M. Rebeiz, A compact RF MEMS metal-contact switch and switching networks. IEEE Microw. Wirel. Compon. Lett. 22(12), 642–644 (2012)CrossRefGoogle Scholar
  11. 11.
    K. Rangra, B. Margesin, L. Lorenzelli, F. Giacomozzi, C. Collini, M. Zen, G. Soncini, L. del Tin, R. Gaddi, Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: design and fabrication. Sens. Actuators A Phys. 123–124, 505–514 (2005)CrossRefGoogle Scholar
  12. 12.
    J.B. Muldavin, G.M. Rebeiz, High Isolation CPW MEMS Shunt Switches Part 2: design. Jet Propuls. 48(6), 1–4 (1999)Google Scholar
  13. 13.
    J.-H. Park, H.-C. Lee, Y.-H. Park, Y.-D. Kim, C.-H. Ji, J. Bu, H.-J. Nam, A fully wafer-level packaged RF MEMS switch with low actuation voltage using a piezoelectric actuator. J. Micromech. Microeng. 16(11), 2281–2286 (2006)CrossRefGoogle Scholar
  14. 14.
    R. Al-Dahleh, R.R. Mansour, High-capacitance-ratio warped-beam capacitive MEMS switch designs. J. Microelectromech. Syst. 19(3), 538–547 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Persano, F. Quaranta, A. Cola, A. Taurino, G. De Angelis, R. Marcelli, P. Siciliano, Ta2O5 thin films for capacitive RF MEMS switches. J. Sens. 2010, 1–5 (2010)CrossRefGoogle Scholar
  16. 16.
    V.K. Varadan, K.J. Vinoy, K.A. Jose, RF MEMS and their Applications (Wiley, Hoboken, 2003)Google Scholar
  17. 17.
    M. Li, J. Zhao, Z. You, G. Zhao, Solid-state electronics design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid State Electron. 127, 32–37 (2017)CrossRefGoogle Scholar
  18. 18.
    A.H. Zahr, L.Y. Zhang, C. Dorion, A. Deveautour, A. Beneteau, R. Stefanini, P. Blondy, F. Courtade, A. Thomas, Long-term actuation demonstration of RF-MEMS switches for space applications. Symp. Des. Test Integr. Packag. MEMS MOEMS 2, 1–4 (2018)Google Scholar
  19. 19.
    K.G. Sravani, T.L. Narayana, K. Guha, K.S. Rao, Role of dielectric layer and beam membrane in improving the performance of capacitive RF MEMS switches for Ka-band applications. Microsyst. Technol. 4, 1–10 (2018).  https://doi.org/10.1007/s00542-018-4038-4 Google Scholar
  20. 20.
    G.M. Rebeiz, RF MEMS Theory, Design, and Technology (Wiley, New Jersey, 2003)Google Scholar
  21. 21.
    D. Bansal, A. Kumar, A. Sharma, K.J. Rangra, Design of compact and wide bandwidth SPDT with anti-stiction torsional RF MEMS series capacitive switch. Microsyst. Technol. 21(5), 1047–1052 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Bansal, A. Bajpai, P. Kumar, M. Kaur, A. Kumar, A. Chandran, K. Rangra, Low voltage driven RF MEMS capacitive switch using reinforcement for reduced buckling. J. Micromech. Microeng. 27(2), 024001 (2017)CrossRefGoogle Scholar
  23. 23.
    H. Zareie, G.M. Rebeiz, High-power RF MEMS switched capacitors using a thick metal process. IEEE Trans. Microw. Theory Tech. 61(1), 455–463 (2013)CrossRefGoogle Scholar
  24. 24.
    J.B. Muldavin, G.M. Rebeiz, High-isolation CPW MEMS shunt switches-part 1: modeling. IEEE Trans. Microw. Theory Tech. 48(6), 1038–1044 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2019

Authors and Affiliations

  1. 1.CSIR-Central Electronics Engineering Research InstitutePilaniIndia
  2. 2.AcSIR- Central Electronics Engineering Research InstitutePilaniIndia

Personalised recommendations