Versatile Hole Carrier Selective MoOx Contact for High Efficiency Silicon Heterojunction Solar Cells: A Review

  • Shahzada Qamar Hussain
  • Kumar Mallem
  • Muhammad Ali Khan
  • Muhammad Quddamah Khokhar
  • Youngseok Lee
  • Jinjoo Park
  • Kyung Su Lee
  • Youngkuk Kim
  • Eun Chel Cho
  • Young Hyun Cho
  • Junsin Yi
Review Paper


Excellent surface passivation and carrier selective contact formed by the metal oxide induced junctions is required for future high efficiency silicon solar cells. Due to wide optical bandgap and high work function of molybdenum oxide (MoOx, x < 3) films envisioned as a superior hole selective layer in organic light emitting diodes and photovoltaics applications. We have studied the influence of ultrathin MoOx layer, as a hole-selective contact for high efficiency of silicon heterojunction (SHJ) solar cell. MoOx films can be deposited by atomic layer deposition, magnetron sputtering and thermal evaporation. Due to higher work function of MoOx films, a potential barrier can develop against electrons while it supports the hole carriers flow hence current density of SHJ solar cells can be enhanced. A summary of single layer and solar cell characteristics of MoOx layer for the application of carrier selective contact and dopant-free asymmetric heterocontact (DASH) solar cells is reported.


Hole selective carrier contact Molybdenum oxide XPS analysis High work function Silicon heterojunction solar cell 



This work was supported by the New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant funded by the Korea government Ministry of Trade, Industry and Energy (No. 20173010012940).


  1. 1.
    D.L. Young, W. Nemeth, S. Grover, A. Norman, B.G. Lee, P. Stradins, Carrier-selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), IEEE, 2014, pp. 1–5Google Scholar
  2. 2.
    M. Bivour, C. Messmer, L. Neusel, F. Zähringer, J. Schön, S. Glunz, M. Hermle, Principles of carrier-selective contacts based on induced junctions, in 33rd European PV Solar Energy Conference and Exhibition, Amsterdam, The Netherlands, 2017, pp. 25–29Google Scholar
  3. 3.
    K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2(5), 17032 (2017)CrossRefGoogle Scholar
  4. 4.
    S.Q. Hussain, S. Kim, S. Ahn, N. Balaji, Y. Lee, J.H. Lee, J. Yi, Influence of high work function ITO: Zr films for the barrier height modification in a-Si: H/c-Si heterojunction solar cells. Sol. Energy Mater. Sol. Cells 122, 130–135 (2014)CrossRefGoogle Scholar
  5. 5.
    S.Q. Hussain, S. Kim, S. Ahn, H. Park, A.H.T. Le, S. Lee, Y. Lee, J.H. Lee, J. Yi, RF magnetron sputtered ITO: Zr thin films for the high efficiency a-Si:H/c-Si heterojunction solar cells. Met. Mater. Int. 20(3), 565–569 (2014)CrossRefGoogle Scholar
  6. 6.
    Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif, Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2(1), 7–15 (2012)CrossRefGoogle Scholar
  7. 7.
    G. Nogay, J.P. Seif, Y. Riesen, A. Tomasi, Q. Jeangros, N. Wyrsch, F.-J. Haug, S. De Wolf, C. Ballif, Nanocrystalline silicon carrier collectors for silicon heterojunction solar cells and impact on low-temperature device characteristics. IEEE J. Photovolt. 6(6), 1654–1662 (2016)CrossRefGoogle Scholar
  8. 8.
    S. De Wolf, M. Kondo, Nature of doped a-Si: H/c-Si interface recombination. J. Appl. Phys. 105(10), 103707 (2009)CrossRefGoogle Scholar
  9. 9.
    S. De Wolf, A. Descoeudres, Z.C. Holman, C. Ballif, High-efficiency silicon heterojunction solar cells: A review. Green. 2, 7–24 (2012)Google Scholar
  10. 10.
    C. Zhang, T. Merdzhanova, V. Smirnov, A. Lambertz, A. Gordijn, M. Meier, Development of p-type µc-SiOx: H for thin-film silicon solar cells on sputtered ZnO: Al. In: 28th European Photovoltaic Solar Energy Conference and Exhibition, Photovoltaik (2013)Google Scholar
  11. 11.
    M. Rahmouni, A. Datta, P. Chatterjee, J. Damon-Lacoste, C. Ballif, P. Roca i Cabarrocas, Carrier transport and sensitivity issues in heterojunction with intrinsic thin layer solar cells on N-type crystalline silicon: a computer simulation study. J. Appl. Phys. 107(5), 054521 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Olibet, E. Vallat-Sauvain, L. Fesquet, C. Monachon, A. Hessler-Wyser, J. Damon-Lacoste, S. De Wolf, C. Ballif, Properties of interfaces in amorphous/crystalline silicon heterojunctions. Phys. Status Solidi (A) 207(3), 651–656 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Park, Y.-J. Lee, J. Park, Y. Kim, J. Yi, Y. Lee, S. Kim, C.-K. Park, K.-J. Lim, Front and back TCO research review of a-Si/c-Si heterojunction with intrinsic thin layer (HIT) solar cell. Trans. Electr. Electron. Mater. 22, 1–8 (2018)Google Scholar
  14. 14.
    L.G. Gerling, S. Mahato, C. Voz, R. Alcubilla, J. Puigdollers, Characterization of transition metal oxide/silicon heterojunctions for solar cell applications. Appl. Sci. 5(4), 695–705 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Geissbühler, J. Werner, S. Martin de Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. Wolf, 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector. Appl. Phys. Lett. 107(8), 081601 (2015)CrossRefGoogle Scholar
  16. 16.
    C. Battaglia, S.M. De Nicolas, S. De Wolf, X. Yin, M. Zheng, C. Ballif, A. Javey, Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104(11), 113902 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Molybdenum oxide MoOx: a versatile hole contact for silicon solar cells. Appl. Phys. Lett. 105(23), 232109 (2014)CrossRefGoogle Scholar
  18. 18.
    J. Bullock, M. Hettick, J. Geissbühler, A.J. Ong, T. Allen, C.M. Sutter-Fella, T. Chen, H. Ota, E.W. Schaler, S. De Wolf, Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 1(3), 15031 (2016)CrossRefGoogle Scholar
  19. 19.
    D. Sacchetto, Q. Jeangros, G. Christmann, L. Barraud, A. Descoeudres, J. Geissbühler, M. Despeisse, A. Hessler-Wyser, S. Nicolay, C. Ballif, ITO/MoOx/a-Si: H (i) hole-selective contacts for silicon heterojunction solar cells: degradation mechanisms and cell integration. IEEE J. Photovolt. 7(6), 1584–1590 (2017)CrossRefGoogle Scholar
  20. 20.
    C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, Hole selective MoOx contact for silicon solar cells. Nano Lett. 14(2), 967–971 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Bullock, Y. Wan, Z. Xu, S. Essig, M. Hettick, H. Wang, W. Ji, M. Boccard, A. Cuevas, C. Ballif, Stable dopant-free asymmetric heterocontact silicon solar cells with efficiencies above 20%. ACS Energy Lett. 3(3), 508–513 (2018)CrossRefGoogle Scholar
  22. 22.
    P. Gao, Z. Yang, J. He, J. Yu, P. Liu, J. Zhu, Z. Ge, J. Ye, Dopant-free and carrier-selective heterocontacts for silicon solar cells: recent advances and perspectives. Adv. Sci. 5(3), 1700547 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Mehmood, H. Nasser, T. Tauqeer, S. Hussain, E. Ozkol, R. Turan, Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact. Int. J. Energy Res. 42(4), 1563–1579 (2018)CrossRefGoogle Scholar
  24. 24.
    R.A. Vijayan, S. Essig, S. De Wolf, B.G. Ramanathan, P. Löper, C. Ballif, M. Varadharajaperumal, Hole-collection mechanism in passivating metal-oxide contacts on Si solar cells: insights from numerical simulations. IEEE J. Photovolt. 8(2), 473–482 (2018)CrossRefGoogle Scholar
  25. 25.
    F. Werfel, E. Minni, Photoemission study of the electronic structure of Mo and Mo oxides. J. Phys. C Solid State Phys. 16(31), 6091 (1983)CrossRefGoogle Scholar
  26. 26.
    M.T. Greiner, Z.-H. Lu, Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Mater. 5(7), e55 (2013)CrossRefGoogle Scholar
  27. 27.
    T. Sun, R. Wang, R. Liu, C. Wu, Y. Zhong, Y. Liu, Y. Wang, Y. Han, Z. Xia, Y. Zou, Investigation of MoOx/n-Si strong inversion layer interfaces via dopant-free heterocontact. Phys. Status Solidi (RRL) Rapid Res. Lett. 11(7), 1700107 (2017)CrossRefGoogle Scholar
  28. 28.
    C. Önneby, C. Pantano, Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface. J. Vac. Sci. Technol. A Vac. Surf. Films 15(3), 1597–1602 (1997)CrossRefGoogle Scholar
  29. 29.
    K. Kim, A. Ford, V. Meenakshi, W. Teizer, H. Zhao, K. Dunbar, Nanopatterning of Mn12-acetate single-molecule magnet films. J. Appl. Phys. 102(9), 094306 (2007)CrossRefGoogle Scholar
  30. 30.
    K. Ding, X. Zhang, F. Xia, R. Wang, Y. Kuang, S. Duhm, J. Jie, X. Zhang, Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. J. Mater. Chem. A 5(1), 285–291 (2017)CrossRefGoogle Scholar
  31. 31.
    M. Kröger, S. Hamwi, J. Meyer, T. Riedl, W. Kowalsky, A. Kahn, Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95(12), 251 (2009)CrossRefGoogle Scholar
  32. 32.
    R. Liu, S.T. Lee, B. Sun, 13.8% efficiency hybrid Si/organic heterojunction solar cells with MoO3 film as antireflection and inversion induced layer. Adv. Mater. 26(34), 6007–6012 (2014)CrossRefGoogle Scholar
  33. 33.
    K. Mallem, Y.J. Kim, S.Q. Hussain, S. Dutta, A.H.T. Le, M. Ju, J. Park, Y.H. Cho, Y. Kim, E.-c. Cho, Molybdenum oxide: A superior hole extraction layer for replacing p-type hydrogenated amorphous silicon with high efficiency heterojunction Si solar cells. Mater. Res. Bull. 110, 90–96 (2019)CrossRefGoogle Scholar
  34. 34.
    S.Q. Hussain, K. Mallem, Y.J. Kim, A.H.T. Le, M.Q. Khokhar, S. Kim, S. Dutta, S. Sanyal, Y. Kim, J. Park, Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells. Mater. Sci. Semicond. Process. 91, 267–274 (2019)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Electrical and Electronic Material Engineers 2018

Authors and Affiliations

  • Shahzada Qamar Hussain
    • 1
    • 3
  • Kumar Mallem
    • 2
  • Muhammad Ali Khan
    • 2
  • Muhammad Quddamah Khokhar
    • 2
  • Youngseok Lee
    • 1
  • Jinjoo Park
    • 2
  • Kyung Su Lee
    • 4
  • Youngkuk Kim
    • 2
  • Eun Chel Cho
    • 2
  • Young Hyun Cho
    • 2
  • Junsin Yi
    • 2
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonSouth Korea
  2. 2.College of Information and Communication EngineeringSungkyunkwan UniversitySuwonSouth Korea
  3. 3.Department of PhysicsCOMSATS University IslamabadLahorePakistan
  4. 4.KPE Co. LTDChangwonSouth Korea

Personalised recommendations