Advertisement

Analysing the Nature of Ministry Guidelines for Developing Interdisciplinary Science Courses (Grades 11–12) in Ontario (Canada)

  • Jessica M. SlomkaEmail author
Article

Abstract

Scientific problems of the twenty-first century involve complex research questions that require an interdisciplinary approach. Educational research suggests that overall student achievement is greater in an interdisciplinary science curriculum than in a discipline-specific science curriculum. Regardless, the secondary school science curriculum in Ontario remains discipline-specific. The Ontario Ministry of Education (OME) released an ‘Interdisciplinary Studies’ curriculum in 2002; however, it appears to be sparsely implemented across Ontario. The objective of this study is to investigate what guidelines are provided by the OME to help Ontario secondary school science teachers (grades 11–12) design and implement interdisciplinary science courses. A document analysis methodology is used to gather data from selected OME curriculum documents. The results of this study found that interdisciplinary science courses are based on multiple models of interdisciplinarity; however, the guidelines provided for developing interdisciplinary curriculum, assessment, and teaching methods do not explicitly indicate which type of interdisciplinary model is applied, nor do the documents explicitly consider the degree of integration of concepts and skills from across disciplines/subject areas. Primarily, the results of this study may inform Ontario Ministry science curriculum writers, teachers and educators interested in interdisciplinary science curriculum elsewhere, about what aspects of the selected curriculum documents provide practical information for developing interdisciplinary science courses and components of the curriculum that may warrant potential revisions or additions during future curriculum drafting.

Keywords

Interdisciplinary Science education Curriculum Integration Ontario 

Résumé

Les problèmes scientifiques du XXIe siècle soulèvent des questions de recherche complexes qui nécessitent une approche interdisciplinaire. Les recherches en pédagogie indiquent que le rendement général des élèves est meilleur dans un programme de sciences interdisciplinaire que dans un programme de sciences spécifique à chaque discipline. Pourtant, le curriculum scientifique dans les écoles ontariennes reste centré sur des programmes à une seule discipline. Le ministère de l’Éducation de l’Ontario (MEO) a publié en 2002 un programme d’études intitulé « Études interdisciplinaires », mais celui-ci semble avoir été peu appliqué dans toute la province. L’objectif de cette étude est d’examiner les lignes directrices fournies par le MEO pour aider les enseignants de sciences au secondaire en Ontario (11e et 12e année) à créer et à proposer des cours de sciences interdisciplinaires. Une méthodologie d'analyse de documents est utilisée pour recueillir des données tirées d’une série de documents choisis provenant des programmes d'études du MEO. Les résultats de cette étude montrent que les cours de sciences interdisciplinaires sont basés sur plusieurs modèles d'interdisciplinarité; cependant, les directives fournies pour l'élaboration de programmes, de modèles d’évaluation et de méthodes d'enseignement interdisciplinaires n'indiquent pas explicitement le type de modèle interdisciplinaire appliqué, et les documents ne prennent pas explicitement en compte le degré d'intégration des concepts et des compétences provenant des différentes disciplines. Essentiellement, les résultats de cette étude peuvent renseigner les enseignants et les concepteurs des programmes de sciences de l’Ontario, de même que les éducateurs qui s’intéressent aux programmes interdisciplinaires en sciences appliqués ailleurs dans le monde, d’une part sur les aspects particuliers des documents analysés qui sont susceptibles de fournir des informations pratiques pour la création de cours de sciences interdisciplinaires, et d’autre part sur les éléments du curriculum qui pourraient justifier d'éventuelles révisions ou des ajouts lors de l’élaboration de futurs programmes.

Notes

Acknowledgements

The author is grateful to S. Kovalchuk (OISE) for providing helpful and constructive feedback on a previous draft of this manuscript.

Funding information

This work was supported by a 2018–2019 Ontario Graduate Scholarship (OGS).

Compliance with Ethical Standards

Conflict of Interest

The author declares that she has no conflict of interest.

References

  1. Augsburg, T. (2005). Becoming interdisciplinary: An introduction to interdisciplinary studies. Dubuque: Kendall/Hunt.Google Scholar
  2. Boix Mansilla, V. (2005). Assessing Student Work at Disciplinary Crossroads. Change: The Magazine of Higher Learning, 37(1), 14-21. doi:  https://doi.org/10.3200/CHNG.37.1.14-21
  3. Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.CrossRefGoogle Scholar
  4. Brown, S.A. (1977). A review of the meanings of, and arguments for, integrated science. Studies in Science Education, 4, 31-62.  https://doi.org/10.1080/03057267708559845 CrossRefGoogle Scholar
  5. Bybee, R.W. & Fuchs, B. (2006). Preparing the 21st century workforce: A new reform in science and technology education. Journal of Research in Science Teaching, 43(4), 349-352.  https://doi.org/10.1002/tea.20147
  6. Calgoni, A., & Eyles, C. H. (2010). A new approach to science education for the 21st century. Educause Review, 45(1), 1-4.Google Scholar
  7. Chowdhary, B., Liu, X., Yerrick, R., Smith, E., & Grant, B. (2014). Examining science teachers’ development of interdisciplinary science inquiry pedagogical knowledge and practices. Journal of Science Teacher Education, 25, 865-884.  https://doi.org/10.1007/s10972-014-9405-0 CrossRefGoogle Scholar
  8. Ciesielski, T. H., Aldrich, M. C., Marsit, C. J., Hiatt, R. A., and Williams, S. M. (2017). Transdisciplinary approaches enhance the production of translational knowledge. Translational Research, 182, 123-134.CrossRefGoogle Scholar
  9. Council of Ministers of Education, Canada (CMEC; 1997). Common Framework of Science Learning Outcomes K-12. Retrieved from http://science.cmec.ca/index.en.htm
  10. Czerniak, C. (2007). Interdisciplinary science teaching. In S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education (pp. 537-559). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  11. Fuchsman, K. (2009) Rethinking integration in interdisciplinary studies. Issues in Integrative Studies, 27, 70-85.Google Scholar
  12. Guzey, S., Moore, T., & Harwell, M. (2016). Building up STEM: An analysis of teacher developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research, 6(1), 11-29.  https://doi.org/10.7771/2157-9288.1129 CrossRefGoogle Scholar
  13. Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541-562.  https://doi.org/10.1080/0950069920140506 CrossRefGoogle Scholar
  14. Hsieh, H-F. and Shannon, S.E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277-1288.CrossRefGoogle Scholar
  15. Hurd, P., DeHart (1975). Science, technology, and society: new goals for interdisciplinary science teaching. The Science Teacher, 42(2), 27-30.Google Scholar
  16. Hurley, M. M. (2001). Reviewing integrated science and mathematics. The search for evidence and definitions from new perspectives. School Science and Mathematics, 101(5), 259-268.  https://doi.org/10.1111/j.1949-8594.2001.tb18028.x CrossRefGoogle Scholar
  17. Jacobs, H. H. (1989). Interdisciplinary Curriculum: Design and Implementation. Alexandria, VA: Association for Supervision and Curriculum Development.Google Scholar
  18. Klein, J. T. (2012). A taxonomy of interdisciplinarity (Chapter 2). In R. Frodeman (Ed.), The Oxford Handbook for Interdisciplinarity (pp. 15-30). Oxford, UK: Oxford University Press.Google Scholar
  19. Klein, J. T., & Newell, W. (1997). Advancing interdisciplinary studies. In J. G. Gaff & J. Ratcliff (Eds.), Handbook of the undergraduate curriculum (pp. 393-415). San Francisco, CA: Jossey- Bass.Google Scholar
  20. MacDonald, F. (2015, March 24). No more physics and maths, Finland to stop teaching individual subjects. Retrieved from https://www.sciencealert.com/no-more-physics-and maths-finland-to-stop-teaching-individual-subjects.
  21. Mayer, V. J. (1995). Using the earth system for integrating the science curriculum. Science Education, 79(4), 375-391.CrossRefGoogle Scholar
  22. McComas, W. F., & Wang, H. A. (1998). Blended science: the rewards and challenges of integrating the science disciplines for instruction. School Science and Mathematics, 98(6), 340-348.  https://doi.org/10.1111/j.1949-8594.1998.tb17430.x CrossRefGoogle Scholar
  23. Meeth, L. R. (1978). Interdisciplinary studies: A matter of definition. Change: The Magazine of Higher Learning, 10(7), 10-10.CrossRefGoogle Scholar
  24. Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. Retrieved from http://ebookcentral.proquest.com
  25. O’Leary, Z. (2010). The Essential Guide to Doing Your Research Project. SAGE Publications, 320 pp.Google Scholar
  26. Ontario Ministry of Education (OME) (2002). Interdisciplinary studies, Grades 11 and 12. Retrieved from http://www.edu.gov.on.ca/eng/curriculum/secondary/interdisciplinary1112curr.pdf
  27. Ontario Ministry of Education (OME) (2008a). The Ontario Curriculum, Grades 9 and 10, Science. Retrieved from http://www.edu.gov.on.ca/eng/curriculum/secondary/science910_2008.pdf
  28. Ontario Ministry of Education (OME) (2008b). Science, Grades 11 and 12. Retrieved from http://www.edu.gov.on.ca/eng/curriculum/secondary/2009science11_12.pdf
  29. Ontario Ministry of Education (OME) (2017). The Ontario Curriculum Grades 9-12, Environmental Education, Scope and sequence of curriculum expectations. Retrieved from http://www.edu.gov.on.ca/eng/curriculum/secondary/environmental_ed_9to12_eng.pdf
  30. Ontario Ministry of Education (OME) (2018). Course enrolment in secondary schools. Retrieved from https://www.ontario.ca/data/course-enrolment-secondary-schools
  31. Parker, J., Heywood, D., & Jolley, N. (2012). Developing pre-service primary teachers’ perceptions of cross-curricular teaching through reflection on learning. Teachers and Teaching, 18(6), 693-716.  https://doi.org/10.1080/13540602.2012.746504 CrossRefGoogle Scholar
  32. Rennie, L. J., Venville, G., & Wallace, J. (2011). Learning science in an integrated classroom: Finding balance through theoretical triangulation. Journal of Curriculum Studies, 43(2), 139-162.  https://doi.org/10.1080/00220272.2010.509516 CrossRefGoogle Scholar
  33. Repko, A. (2008). Interdisciplinary research: Process and theory. Thousand Oaks, CA: SAGE.Google Scholar
  34. Saldaňa, J. (2009). Introduction to codes and coding. In The Coding Manual for Qualitative Researchers (pp. 1-31). London: SAGE Publications Ltd.Google Scholar
  35. Sales, J., Comeau, D., Liddle, K., Khanna, N., Perrone, L., Palmer, K., & Lynn, D. (2006). Bridging the gap: A research-based approach for teaching interdisciplinary science to undergraduate freshman students. Journal of College Science Teaching, 35(6), 36-41.Google Scholar
  36. Spiller, P. (2017, May 29). Could subjects soon be a thing of the past in Finland? Retrieved from http://www.bbc.com/news/world-europe-39889523.
  37. Stuart, L. & Dahm, E. (1999). 21st century skills for 21st century jobs. A Report of the U.S. Department of Commerce, U.S. Department of Education, U.S. Department of Labor, National Institute of Literacy, and the Small Business Administration. Washington, DC: United States Department of Commerce. Available at https://digitalcommons.ilr.cornell.edu
  38. Venville, G., Wallace, J., Rennie, L., & Malone, J. (2000). Bridging the boundaries of compartmentalised knowledge: Student learning in an integrated environment. Research in Science & Technological Education, 18(1), 23-35.  https://doi.org/10.1080/713694958 CrossRefGoogle Scholar
  39. Venville, G., Rennie, L., & Wallace, J. (2005). Student understanding and application of science concepts in the context of an integrated curriculum setting. International Journal of Science and Mathematics Education, 1(4), 449-475.  https://doi.org/10.1007/s10763-005-2838-3 CrossRefGoogle Scholar
  40. Wei, B. (2009). In search of meaningful integration: The experiences of developing integrated science curricula in junior secondary schools in China. International Journal of Science Education, 31(2), 259-277.  https://doi.org/10.1080/09500690701687430 CrossRefGoogle Scholar
  41. Xiao, H., & Changyun, M. (2013). The integrated science curriculum in mainland China. In E.H.F. Law and C. Li (Eds.), Curriculum Innovations in Changing Societies (pp. 189-215). Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  42. Yates, K.K., C. Turley, B.M. Hopkinson, A.E. Todgham, J.N. Cross, H. Greening, P. Williamson, R. Van Hooidonk, D.D. Deheyn, and Z. Johnson. (2015). Transdisciplinary science: A path to understanding the interactions among ocean acidification, ecosystems, and society. Oceanography 28(2), 212-225.CrossRefGoogle Scholar

Copyright information

© Ontario Institute for Studies in Education (OISE) 2019

Authors and Affiliations

  1. 1.Department of Curriculum, Teaching and Learning, Ontario Institute for Studies in Education (OISE)University of TorontoTorontoCanada
  2. 2.Department of Chemical and Physical SciencesUniversity of Toronto MississaugaMississaugaCanada

Personalised recommendations