Adopting Drone Technology in STEM (Science, Technology, Engineering, and Mathematics): An Examination of Elementary Teachers’ Pedagogical Content Knowledge

  • Karen GoodnoughEmail author
  • Saiqa Azam
  • Patrick Wells


In this case study, the authors collaborated with two grade 4 teachers, who participated in a large-scale professional learning program focused on helping K-9 teachers enhance their classroom practice and confidence in teaching science through inquiry-based learning. The specific research questions that guided the study were the following: (a) How do components of teachers’ pedagogical content knowledge (PCK) change as they adopt drone technology in the context of a unit on habitats? (b) What challenges will the teachers encounter as they adopt inquiry-based approaches to teaching and learning using drone technology? and (c) What factors will influence the development of teachers’ PCK? Using a multi-dimensional PCK framework, the authors report on changes in teachers’ orientations to teaching science and knowledge of assessment, instructional strategies, science curriculum, and student learning. In addition, it was found that teacher efficacy and knowledge of student learning were highly connected factors that contributed to PCK growth and changes in classroom practice. As the teachers gained more insight into how to support student learning through the adoption of drones and inquiry-based approaches to teaching and learning, they strengthened their confidence and belief in their own ability to create classroom learning environments that could engage all learners in science. Challenges and implications related to the adoption of droned technology are also discussed.


Action research Drone technology Pedagogical content knowledge Teacher professional learning 


Dans cette étude de cas, les auteurs ont collaboré avec deux enseignants de 4e année, qui ont participé à un vaste programme de perfectionnement professionnel visant à aider les enseignants de la maternelle à la 9e année à améliorer leurs pratiques d’enseignement et leur confiance en eux en enseignement des sciences, par le biais d’un apprentissage fondé sur la recherche. Les questions de recherche spécifiques qui ont guidé cette étude sont les suivantes: a) comment les éléments de connaissance des contenus pédagogiques (CCP) évoluent-ils chez les enseignants lorsque la technologie des drones est adoptée dans le contexte d’une unité d’enseignement / apprentissage sur les habitats? b) quels défis les enseignants devront-ils relever s'ils adoptent des approches d'enseignement et d'apprentissage basées sur l'investigation qui utilisent la technologie des drones? c) quels facteurs influencent le développement de la CCP des enseignants? À l’aide d’un cadre multidimensionnel en CCP, les auteurs rendent compte d’une évolution dans les orientations des enseignants en matière d’enseignement des sciences et dans leurs connaissances en matière d’évaluation, de stratégies pédagogiques, de curriculum scientifique et d’apprentissage des élèves. En outre, on constate que l'efficacité des enseignants et leur connaissance de l'apprentissage des élèves sont des facteurs étroitement liés qui contribuent au perfectionnement de la CCP ainsi qu’à une évolution des pratiques d’enseignement. Au fur et à mesure que les enseignants comprennent mieux comment soutenir l'apprentissage des élèves grâce à l'utilisation de drones et à l’adoption d'approches d'enseignement / apprentissage basées sur l'investigation, ils renforcent leur confiance en leur propre capacité de créer des environnements d'apprentissage en classe susceptibles d’engager tous les apprenants dans les sciences. Les défis et les implications liés à l'adoption de la technologie des drones sont également abordés.


Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Abell, S. K. (2008). Twenty years later: Does pedagogical content knowledge remain a useful idea? International Journal of Science Education, 30(10), 1405-1416. CrossRefGoogle Scholar
  2. Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18. CrossRefGoogle Scholar
  3. Australian Curriculum, Assessment, and Reporting Authority. (2015). Science: Sequence of content F-6. Retrieved from
  4. Aydin, S., & Boz, Y. (2013). The nature of integration among PCK components: A case study of two experienced chemistry teachers. Chemistry Education Research and Practice, 14(4), 615-624. CrossRefGoogle Scholar
  5. Banchi, H. & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.Google Scholar
  6. Bandura A. (1997). Self-efficacy: The exercise of control. New York: W. H. Freeman and Company.Google Scholar
  7. Barendsen, E. & Henze, I. (2017). Relating teacher PCK and teacher practice using classroom observation research. Research in Science Education.
  8. Baxter, J. A., & Lederman, N. G. (1999). Assessment and measurement of pedagogical content knowledge. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge (pp. 147-161). Dordrecht: Springer.Google Scholar
  9. Berg, C. A. R., Bergendahl, V. C. B., Lundberg, B. K. S., & Tibell, L. A. E. (2003). Benefiting from an open-ended experiment? A comparison of attitudes to, and outcomes of, an expository versus an open-inquiry version of the same experiment. International Journal of Science Education, 25(3), 351–72. CrossRefGoogle Scholar
  10. Bevan, B., Gutwill, J. P., Petrich, M., & Wilkinson, K. (2015). Learning through STEM-rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99(1), 98–120. CrossRefGoogle Scholar
  11. Boesdorfer, S. B. (2015). Using teachers’ choice of representations to understand the translation of their orientation toward science teaching to their practice. Electronic Journal of Science Education, 19(1), 1-20. Retrieved from Google Scholar
  12. Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Colorado Springs, CO: BSCS.Google Scholar
  13. Campbell, T., Melville, W., & Goodwin, D. (2017). Science teacher orientations and PCK across science topics in grade 9 earth science. International Journal of Science Education, 39(10), 1263-1281. CrossRefGoogle Scholar
  14. Capps, D. K., Crawford, B., & Constas, M. A. (2012). A review of empirical literature on inquiry professional development: Alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23 (3), 291 318. CrossRefGoogle Scholar
  15. Capps, D., Shemwell, J., & Young, A. (2016). Over reported and misunderstood? A study of teachers’ reported enactment and knowledge of inquiry-based science teaching. International Journal of Science Education, 38(6), 934–959. CrossRefGoogle Scholar
  16. Carlson, J., & Daehler, K. R. (2019). The refined consensus model of pedagogical content knowledge in science education. In A. Hume, R. Cooper, & A. Borowski Eds.), Repositioning pedagogical content knowledge in teachers’ knowledge for teaching science (pp. 77-92). Gateway East, Singapore: Springer Nature.CrossRefGoogle Scholar
  17. Carter, K. (1990). Teachers’ knowledge and learning to teach. In R Houston (Ed.), Handbook of research on teacher education (pp. 291-310). New York: MacMillan.Google Scholar
  18. Chichekian, T., Shore, B. M., & Tabatabai, D. (2016). First-year teachers’ uphill struggle to implement inquiry instruction: Exploring the interplay among self-efficacy, conceptualizations, and classroom observations of inquiry enactment. SAGE Open, 6(2), 1-19. CrossRefGoogle Scholar
  19. Clark, R. E., Kirschner, P. A., & Sweller, J. (2012). Putting students on the path to learning: The case for fully guided instruction. American Educator, 36(1), 6-11. Retrieved from Google Scholar
  20. Council of Ministers of Education (Canada). (1997). K-12 common framework of science learning outcomes. Retrieved from
  21. Cross, D. I. (2009). Alignment, cohesion, and change: Examining mathematics teachers’ belief structures and their influence on instructional practices. Journal of Mathematics Teacher Education, 12(5), 325-346. CrossRefGoogle Scholar
  22. Demirdöğen, B., & Uzuntiryaki-Kondakçı, E. (2016). Closing the gap between beliefs and practice: Change of pre-service chemistry teachers’ orientations during a PCK-based NOS course. Chemistry Education Research and Practice, 17(4), 818-841. CrossRefGoogle Scholar
  23. Department of Education. (2015). National curriculum in England: Science programs of study. Retrieved from
  24. Department of Education and Early Childhood Development. (2016). Science 4: Curriculum guide 2016. Retrieved from
  25. DiBiase, W., & McDonald, J. R. (2015). Science teacher attitudes toward inquiry-based teaching and learning. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 88(2), 29-38.
  26. Dobber, M., Zwart, R., Tanis, M., & van Oers, B. (2017). Literature review: The role of the teacher in inquiry-based education. Educational Research Review, 22, 194-214. CrossRefGoogle Scholar
  27. Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on science teachers’ knowledge, practice and student learning: A review. Professional Development in Education, 42(4), 569-588. CrossRefGoogle Scholar
  28. Dunkhase, J.A. (2003). The coupled-inquiry cycle: A teacher concerns-based model for effective student inquiry. Science Educator, 12(1), 10-15.Google Scholar
  29. Duschl, R.A., Grandy, R.E. (2008). Teaching scientific inquiry: recommendations for research and implementation. Leiden, NL: Sense Publishers.CrossRefGoogle Scholar
  30. Everett, S., & Moyer, R. (2007). “Inquirize” your teaching: A guide to turning favorite activities into inquiry lessons. Science and Children, 44(7), 54-57.Google Scholar
  31. Friedrichsen, P., Van Driel, J. H., & Abell, S. K. (2011). Taking a closer look at science teaching orientations. Science Education, 95(2), 358–376. CrossRefGoogle Scholar
  32. Furtak, E. M., Seidel, T., Iverson, H., & Briggs, D. C. (2012). Experimental and quasi experimental studies of inquiry-based science teaching. Review of Educational Research, 82, 300–329. CrossRefGoogle Scholar
  33. Geddis, A. N., Onslow, B., Beynon, C., & Oesch, J. (1993). Transforming content knowledge: Learning to teach about isotopes. Science Education, 77(6), 575–591. CrossRefGoogle Scholar
  34. Gess-Newsome, J. (1999). PCK: An introduction and orientation. In J. Gess-Newsome & N. Lederman (Eds.), Examining PCK: The construct and its implications for science education (pp. 3-20). Boston, MA: Kluwer. CrossRefGoogle Scholar
  35. Gess-Newsome, J. (2015). A model of teacher professional knowledge and skill including PCK: Results of the thinking from the PCK summit. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 38-52). New York: Routledge.Google Scholar
  36. Gillani, B., & Gillani, R. (2015). From droughts to drones. Science and Children, 53(2), 50–54.CrossRefGoogle Scholar
  37. Goodnough, K. (2016). Professional learning of K-6 teachers in science through collaborative action research: An activity theory analysis. Journal of Science Teacher Education, 27(7), 747–767.
  38. Goodnough, K., Pelech, S., & Stordy, M. (2014). Effective professional development in STEM education: The perceptions of primary/elementary teachers. Teacher Education and Practice, 27(2-3), 402–423.Google Scholar
  39. Hashweh, M. Z. (2005). Teacher pedagogical construction: A reconfirmation of pedagogical content knowledge. Teachers and Teaching, 11(3), 273-292. CrossRefGoogle Scholar
  40. Henderson, M. & Romeo, G. (2015) Teaching and digital technologies: Issues and critical questions. Cambridge, UK: Cambridge University Press.Google Scholar
  41. Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42(2), 99-107. CrossRefGoogle Scholar
  42. Jerald, C. D. (2007). Believing and achieving. Washington, DC: Center for Comprehensive School Reform and Improvement. Retrieved from Google Scholar
  43. Kemmis, S., & McTaggart, R. (2005). Participatory action research: Communicative action and the public sphere. Thousand Oaks, CA: Sage Publications.Google Scholar
  44. Kidman, G., & Casinader, N. (2017). The unfolding of inquiry in education: a research chronology. In G. Kidman & N. Casinader (Eds.), Inquiry-based teaching and learning across disciplines: comparative theory and practice in schools (pp. 3–29). London: Palgrave-Macmillan. CrossRefGoogle Scholar
  45. Kind, V. (2015). On the beauty of knowing then not knowing: Pinning down the elusive qualities of PCK. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Re-examining pedagogical content knowledge in science education (pp. 178-196). New York, NY: Routledge.Google Scholar
  46. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86. CrossRefGoogle Scholar
  47. Lee, Y. (2011). Enhancing pedagogical content knowledge in a collaborative school-based professional development program for inquiry-based science teaching. Asia-Pacific Forum on Science Learning and Teaching, 12(2), 1-29. Retrieved from Google Scholar
  48. Lee, E., & Luft, J. A. (2008). Experienced secondary science teachers’ representation of pedagogical content knowledge. International Journal of Science Education, 30(10), 1343-1363. CrossRefGoogle Scholar
  49. Loughran, J., Milroy, P., Berry, A., Gunstone, R., & Mulhall, P. (2001). Documenting science teachers’ pedagogical content knowledge through Pap-eRs. Research in Science Education, 31(2), 289-307. CrossRefGoogle Scholar
  50. Magnusson, S., Krajacik, J., & Borko, H. (1999). Nature, sources, and development of PCK for science teaching. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining PCK: The construct and its implications for science education (pp. 95-120). Boston, MA: Kluwer Academic Press. CrossRefGoogle Scholar
  51. Maxwell, J. A. (2012). Qualitative research design: An interactive approach. Thousand Oaks, CA: Sage.Google Scholar
  52. Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass.Google Scholar
  53. Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and implementation. San Francisco, CA: John Wiley & Sons.Google Scholar
  54. Ministry of Education-Singapore. (2013). Science syllabus lower secondary express course. Retrieved from
  55. Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction – what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496. CrossRefGoogle Scholar
  56. Mkimbili, S. T., Tiplic, D., & Ødegaard, M. (2017). The role played by contextual challenges in practising inquiry-based science teaching in Tanzania “secondary schools”. African Journal of Research In Mathematics, Science and Technology Education, 21(2), 211-221. CrossRefGoogle Scholar
  57. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.Google Scholar
  58. Park, S., & Chen, Y.C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49 (7), 922-941. CrossRefGoogle Scholar
  59. Park, S., & Oliver, J. S. (2008). Revisiting the conceptualization of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261-284. CrossRefGoogle Scholar
  60. Sahingoz, S. (2017). An investigation of Turkish middle school science teachers’ pedagogical directions to direct and inquiry instructional approaches (Unpublished doctoral Dissertation). Western Michigan University, Kalamazoo, MI, United States of America.Google Scholar
  61. Sattar, F., Tamatea, L., & Nawaz, M. (2017). Droning the pedagogy: Future prospect of teaching and learning. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 11(6), 1632-1637. Retrieved from
  62. Schiffman, R. (2014). Drones flying high as new tool for field biologists. Science, 344(6183), 459. Retrieved from CrossRefGoogle Scholar
  63. Shattuck G. (2010) Understanding school leaders’ role in teachers’ adoption of technology integration classroom practices. In M. Orey, S. Jones, & R. Branch (Eds.), Educational media and technology yearbook (pp. 7-28). Boston, MA: Springer.CrossRefGoogle Scholar
  64. Shulman, L. S. (1987). Knowledge and teaching: Foundations of new reform. Harvard Educational Review, 57, 1-22.CrossRefGoogle Scholar
  65. Smit, R., Weitzel, H., Blank, R., Rietz, F., Tardent, J., & Robin, N. (2017). Interplay of secondary pre-service teacher content knowledge (CK), pedagogical content knowledge (PCK) and attitudes regarding scientific inquiry teaching within teacher training. Research in Science & Technological Education, 35(4), 477-499. CrossRefGoogle Scholar
  66. Smith, B., & Mader, J. (2018). Drones for the science classroom. The Science Teacher, 85(2), 16.CrossRefGoogle Scholar
  67. Taber, K. (2013). Classroom-based research and evidence-based practice: An introduction. Thousand Oaks, CA: Sage Publications.Google Scholar
  68. Tamir, P. (1988). Subject matter and related pedagogical knowledge in teacher education. Teaching and Teacher Education, 4(2), 99-110. CrossRefGoogle Scholar
  69. Wagh, A., Cook, W. K., & Wilensky, U. (2017). Bridging inquiry-based science and constructionism: Exploring the alignment between students tinkering with code of computational models and goals of inquiry. Journal of Research in Science Teaching, 54(5), 615–641. CrossRefGoogle Scholar
  70. Wei, B., & Liu, H. (2018). An experienced chemistry teacher’s practical knowledge of teaching with practical work: The PCK perspective. Chemistry Education Research and Practice, 19(2), 452–462. doi: CrossRefGoogle Scholar
  71. Wong, S. S., & Luft, J. A. (2015). Secondary science teachers’ beliefs and persistence: A longitudinal mixed-methods study. Journal of Science Teacher Education, 26(7), 619-645. CrossRefGoogle Scholar
  72. Yin, R. K. (2014). Case study research: Design and methods. Thousand Oaks, California: Sage Publications.Google Scholar
  73. Yoon, HG., Joung, Y. J., & Kim, M. (2012). The challenges of science inquiry teaching for preservice teachers in elementary classrooms: Difficulties on and under the scene. Research in Science Education, 42(3), 589–608. CrossRefGoogle Scholar
  74. Zhang, L. (2016). Is inquiry-based science teaching worth the effort? Some thoughts worth considering. Science & Education, 25(7-8), 897-915. CrossRefGoogle Scholar
  75. Zion, M., & Mendelovici, R. (2012) Moving from structured to open inquiry: Challenges and limits. Science Education International, 23 (4), 383-399. Retrieved from Google Scholar
  76. Zion, M., Cohen, S., & Amir, R. (2007). The spectrum of dynamic inquiry teaching practices. Research in Science Education, 37(4), 423-447. CrossRefGoogle Scholar

Copyright information

© Ontario Institute for Studies in Education (OISE) 2019

Authors and Affiliations

  1. 1.Faculty of EducationMemorial University of NewfoundlandSt. John’sCanada
  2. 2.Faculty of EducationSt. John’sCanada

Personalised recommendations