Advertisement

Synthesis and Characterizations of ZnS:Cu/ZnS Assisted by 3-Mercaptopropionic Acid

  • Labiadh Houcine
  • Louiz Sonia
  • Raphaël Schneider
  • Tahar Ben Chaabane
Original Article
  • 7 Downloads

Abstract

3-Mercaptopropionic acid capped core/shell ZnS:Cu(3%)/ZnS doped quantum dots (QDs) where synthesized at 95 °C in basic aqueous solution using the nucleation doping approach methods. The structural and optical properties of the QDs were characterized by X-ray diffraction (XRD) which confirms the cubic phase blende, whereas transmission electron microscopy (TEM) which shows the nanoparticles are spherical. UV–vis spectroscopy and photoluminescence (PL) spectroscopy. The obtained nearly monodisperse QDs have an average diameter of ca. 3.31 nm and a zinc blende crystal structure. The PL emission wavelength was limited between 500 and 510 nm but PL quantum efficiency of ZnS:Cu/ZnS core/shell nanocrystals increased up to 5%. The experimental results demonstrate that this method is effective for the preparation of ZnS:Cu/ZnS quantum dots.

Keywords

Quantum dots Semiconductor Core/shell Fluorescence 

Notes

Acknowledgements

The authors are grateful to the team at the Laboratory of Synthesis and Structure of Nanomaterials and laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRS, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France.

Author contributions

LH and LS drafted and revised the manuscript. LH carried out the synthetic experiments and characterizations. LH and LS participated in the scientific flow. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Efros AL, Rosen M (2000) The electronic structure of semi-conductor nanocristals. Ann Rev Mater Res 30:475–521Google Scholar
  2. 2.
    Warner JH, Tilley RD (2005) Synthesis and self-assembly of triangular and hexagonal CdS nanocrystals. Advan Mater 17:2997–3001CrossRefGoogle Scholar
  3. 3.
    Ramzi N, Habib E, Mokhtar F (2015) Effect of Mn doping on structural, optical and photocatalytic behaviors of hydrothermal Zn1−xMnxS nanocrystals. Appl Surf Sci 351:1122–1130CrossRefGoogle Scholar
  4. 4.
    Elangovan SV, Chandramohan V, Sivakumar N, Senthil TS (2015) Synthesis and characterization of sodium doped ZnO nanocrystals and its application to photocatalysis. Superlattices Microstruct 85:901–907CrossRefGoogle Scholar
  5. 5.
    Tiutiunnyk A, Akimov V, Tulupenko V, Mora-Ramos ME, Kasapoglu E, Ungang F, Sökmen I, Morales AL, Duque CA (2016) Electronic structure and optical properties of triangular GaAs/AlGaAs quantum dots: exciton and impurity states. Phys B 484:95–108CrossRefGoogle Scholar
  6. 6.
    Amna S, Mohammad I, Iftikhar A, Aftab A, Mohammad M, Yasir K, Yanqiu Z (2016) Quantum confinement and size effects in Cu2ZnSnS4 thin films produced using solution processed ultrafine nanoparticles. Mater Sci Semicond Process 41:420–427CrossRefGoogle Scholar
  7. 7.
    Lixiong Y, Dan W, Jianfeng H, Liyun C, Haibo O, Xiang Y (2016) Morphology-controllable synthesis and enhanced photocatalytic activity of ZnS nanoparticles. J Alloy Compd 664:476–480CrossRefGoogle Scholar
  8. 8.
    Jiménez-Hernández L, Estévez-Hernández O, Hernández-Sánchezb M, Díazc JA, Farías- Sánchezc M (2016) 3-mercaptopropionic acid surface modification of Cu-doped ZnO nanoparticles: their properties and peroxidase conjugation. Colloids Surf A: Physicochem Eng Asp 489:351–359CrossRefGoogle Scholar
  9. 9.
    Mehrorang G, Amin A, Reza S (2013) ZnS: Cu nanoparticles loaded on activated carbon as novel adsorbent for kinetic, thermodynamic and isotherm studies of Reactive Orange 12 and Direct yellow 12 adsorption. Spectrochim Acta Part A Mol Biomol Spectrosc 114:687–694CrossRefGoogle Scholar
  10. 10.
    Harish GS, Sreedhara R (2015) Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles. Phys B 473:48–53CrossRefGoogle Scholar
  11. 11.
    Thuy UTD, Nguyen QL, Parlett CMA, Lalev GM, Wilson K (2014) Synthesis of CuS and CuS/ZnS core/shell nanocrystals for photocatalytic degradation of dyes under visible light. Catal Commun 44:62–67CrossRefGoogle Scholar
  12. 12.
    George R, Santana A, Cristiane D, Cunha N, Paulo A, Xavier S, Silverio LC, Luiz Pereira C, Iara FG (2014) Cu-doped CdS and ZnS nanocrystals grown onto thiolated silica-gel. Opt Mater 37:641–645CrossRefGoogle Scholar
  13. 13.
    Kuppayee M, Nachiyar Vanathi G K, Ramasamy V (2012) Enhanced photoluminescence properties of ZnS:Cu2+ nanoparticles using PMMA and CTAB surfactants. Mater Sci Semicond Process 15:136–144CrossRefGoogle Scholar
  14. 14.
    Srivastavav BB, Jana S, Pradhan N (2011) Doping Cu in semiconductor nanocrystals: some old and some new physical insights. J Am Chem Soc 133:1007CrossRefGoogle Scholar
  15. 15.
    Tiwari A, Khan SA, Kher RS, Mehta M, Dhoble SJ (2011) Effect of capping on the mechanoluminescence of γ-irradiated ZnS: Cu nanophosphors. J Lumin 131:1172CrossRefGoogle Scholar
  16. 16.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  17. 17.
    Michalet X, Pinaud FF, Bentolilo LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544CrossRefGoogle Scholar
  18. 18.
    Houcine L, Tahar Be Ch, Lavinia B, Nidhal B, Serge C, Ghouti M, Sch Raphaël (2014) Preparation of Cu-doped ZnS QDs/TiO2 nanocomposites with highphotocatalytic activity. Appl Catal B 144:29–35CrossRefGoogle Scholar
  19. 19.
    Zhang Y, Xihui L, Li Langchen (2004) Synthesis and photoluminescence properties of hydrophilic ZnS nanoparticles. Mater Lett 64:1521–1523CrossRefGoogle Scholar
  20. 20.
    Rietveld HM (1967) Method of refining powder diffraction data to find the crystal structure developed by Hugo M. Rietveld. J Appl Crys 22:151Google Scholar
  21. 21.
    Rodriguez CJ (1990) Collected Abstract of Powder Diffraction Meeting. Toulouse, France, pp 127Google Scholar
  22. 22.
    Gong WW, Zheng ZH, Zheng JJ, Hu XB, Gao W (2007) Water soluble CdS nanoparticles with controllable size prepared via femtosecond laser ablation. J Appl Phys 102:064304CrossRefGoogle Scholar
  23. 23.
    Shionoya S, Koda T, Era K, Fujiwara H (1964) Spin-dependent donor-acceptor pair recombination in ZnS crystals showing the self-activated emission. J Phys Soc Jpn 19:1157CrossRefGoogle Scholar
  24. 24.
    Huang J, Yang Y, Xue S, Yang B, Liu S (1997) The size-dependent measurements show that the emission color of the Cu2+ emission is influenced by quantum confinement effects. J Shen Appl Phys Lett 70:2335CrossRefGoogle Scholar
  25. 25.
    Bhargava RN, Gallagher D, Hong X, Nurmikko A (1994) Optical properties of manganese-doped nanocrystals of ZnS. Phys Rev Lett 72:416CrossRefGoogle Scholar
  26. 26.
    Lijia S, Yanfang G, Feng Y (2011) Semiconductor quantum dots for biomedicial applications. Sensors 11:11736–11751CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Labiadh Houcine
    • 1
  • Louiz Sonia
    • 2
  • Raphaël Schneider
    • 3
  • Tahar Ben Chaabane
    • 1
  1. 1.Unité de Recherche UR11ES30 de Synthèse et Structures de NanomatériauxUniversité de Carthage, Faculté des Sciences de BizerteJarzounaTunisia
  2. 2.Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia
  3. 3.Université de Lorraine, Laboratoire Réactions et Génie des Procédés (LRGP), UMR 7274, CNRSNancyFrance

Personalised recommendations