Sustainable carbon dots as “turn-off” fluorescence sensor for highly sensitive Pb2+ detection

  • Soumya Ravi
  • M. K. JayarajEmail author


Carbon dots(C-dots) are a fascinating new class of fluorescent nanomaterials which gained attention ever since their accidental discovery by Xu. et al. [1] during the electrophoretic purification of single walled carbon nanotubes (SWCNTs) through arc-discharge method in 2004. They are characterized by exceptional tunable photoluminescent properties. C-dots are essentially carbon nanoparticles with nanocrystalline to amorphous sp2 cores having some form of surface passivation typically functionalized with complex surface groups, especially oxygen-related functional groups, such as carboxyl and hydroxyl [2, 3]. These surface groups make great contributions to the optical properties of C-dots and also make them aqueous dispersible. Due to their small particle size, C-dots possess strong quantum confinement and edge effects [4] due to which they exhibit photoluminescence which can be tailored by modifying surface or edges [5], doping and controlling the size [6]. Besides,...


C-dots Photoluminescence Pb2+ detection Fluorescence quenching 



The authors gratefully acknowledge Sophisticated Analytical Instruments Facility (SAIF) at Sophisticated Test Instrumentation Centre (STIC), Cochin University of Science and Technology, Kerala for the support extended for HR-TEM imaging.


  1. 1.
    X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004)CrossRefGoogle Scholar
  2. 2.
    F.R. Baptista, S.A. Belhout, S. Giordani, S.J. Quinn, Recent developments in carbon nanomaterial sensor. Chem. Soc. Rev. 44, 4433–4453 (2005)CrossRefGoogle Scholar
  3. 3.
    A. Cayeula, M.L. Soriano, C. Carillo-Carrion, M. Valcarcel, Semiconductor and carbon-based fluorescence nanodots: the need for consistency. Chem. Commun. 52, 1311–1326 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L.H. Ge, L. Song, L.B. Alemany, X.B. Zhan, P.M. Ajayan, Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Yan, Z. Sun, H. Zhang, X. Sun, Y. Jiang, Z. Bai, The fluorescence mechanism of carbon dots and methods for tuning their emission color: A review. Microchim. Acta 583, 1–37 (2019)Google Scholar
  6. 6.
    Z. Wang, H. Zeng, L. Sun, Graphene quantum dots: Versatile photoluminescence for energy, biomedical and environmental applications. J. Mater. Chem. C 3, 1157–1165 (2015)CrossRefGoogle Scholar
  7. 7.
    L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.J. Zhu, Focusing on luminescent graphene quantum dots: Current status and future prospective. Nanoscale. 5, 4015–4039 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Xiang, Q. Dan, D. Yang, N. Bing, Y. Zhao, H. Fan, Z. Sun, Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 30, 1704740–1704748 (2018)CrossRefGoogle Scholar
  9. 9.
    A. Kumar, A.R. Chowdhury, D. Laha, T.K. Mahto, P. Karmakar, S.K. Sahu, Green synthesis of carbon dots from Ocimum sanctum for effective fluorescence of Pb2+ and live cell imaging. Sensors Actuators B 242, 679–686 (2017)CrossRefGoogle Scholar
  10. 10.
    S. Anwar, H. Ding, M. Xu, X. Hu, Z. Li, J. Wang, L. Liu, L. Jiang, D. Wang, C. Dong, M. Yan, Q. Wang, H. Bi, Recent advances in synthesis, optical properties and biomedical application of carbon dots. ACS Appl. Bio Mater. 2, 2317–2338 (2019)CrossRefGoogle Scholar
  11. 11.
    X. Gao, D. Cheng, Z. Zhuang, W. Chen, Carbon quantum dot based nanoprobes for metal ion detection. J. Mater. Chem. C 4, 6927–6945 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Lim, Y. Liu, H.Y. Kim, D.I. Son, Facile synthesis and characterization of carbon quantum dots and photovoltaic applications. Thin Solid Films 660, 672–677 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Joseph, A.A. Anappara, Ellagic acid-functionalized fluorescent carbon dots for ultrasensitive and selective detection of mercuric ions via quenching. J. Lumin. 192, 761–766 (2017)CrossRefGoogle Scholar
  14. 14.
    S. Ravi, Sajini Vadukumpully. J. Environ. Chem. Eng. 4, 835–856 (2016)CrossRefGoogle Scholar
  15. 15.
    R. Singh, N. Gautam, A. Mishra, R. Gupta, Heavy metals and living systems: An overview. Indian J. Pharm. 43, 246–253 (2011)CrossRefGoogle Scholar
  16. 16.
    S. Tiwari, C. Lata, Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front. Plant Sci. 9, 452 (2018)CrossRefGoogle Scholar
  17. 17.
    Z. Fang, J. Růžička, E.H. Hansen, An efficient flow injection system with on-line ion-exchange Preconcentration for the determination of trace amounts of heavy metals by atomic absorption spectrometry. Anal. Chim. Acta 164, 23–39 (1984)CrossRefGoogle Scholar
  18. 18.
    A.T. Townsend, K.A. Miller, S. McLean, S. Aldous, The determination of copper, zinc, cadmium and Lead in urine by high resolution ICP-MS. J. Anal. At. Spectrom. 13, 1213–1219 (1998)CrossRefGoogle Scholar
  19. 19.
    J.L. Gardea-Torresdey, J.R. Peralta-Videa, G. de la Rosa, J.G. Parsons, Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord. Chem. Rev. 249, 1797–1810 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Eshkeiti, B.B. Narakathu, A.S.G. Reddy, A. Moorthi, M.Z. Atashbar, E. Rebrosova, M. Rebros, M. Joyce, Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sensors Actuators B Chem. 171, 705–711 (2012)CrossRefGoogle Scholar
  21. 21.
    W. Yantasee, Y. Lin, K. Hongsirikarn, G.E. Fryxell, R. Addleman, C. Timchalk, Electrochemical sensors for the detection of Lead and other toxic heavy metals: The next generation of personal exposure biomonitors. Environ. Health Perspect. 115, 1683–1690 (2017)CrossRefGoogle Scholar
  22. 22.
    J.X. Shi, C. Lu, D. Yan, L.N. Ma, High selectivity sensing of cobalt in HepG2 cells based on necklace model microenvironment- modulated carbon-dot improved chemiluminescence in Fenton-like system. Biosens. Bioelectron. 45, 58–64 (2013)CrossRefGoogle Scholar
  23. 23.
    S.N. Qu, H. Chen, X.M. Zheng, J.S. Cao, X.Y. Liu, Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities. Nanoscale 5, 5514–5518 (2013)CrossRefGoogle Scholar
  24. 24.
    C. Xiong, W. Liang, H. Wang, Y. Zheng, Y. Zhou, Y. Chai, R. Yuan, In-situ electropolymerization of nitrogen doped carbon dots and their application in an electrochemiluminescence biosensor for the detection of intracellular lead ions. Chem. Commun. 52, 5589–5592 (2016)CrossRefGoogle Scholar
  25. 25.
    L. Bokobza, J. L. Bruneel, M. Couzi, Raman Spectra of Carbon-based materials (from Graphite to Carbon black) and some of Silicon composites. C,1, 77–94 (2015)Google Scholar
  26. 26.
    T. Vasilica, A. Matei, A.M. Avram, FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 46(6), 502–520 (2016)CrossRefGoogle Scholar
  27. 27.
    V. Krishnakumar, V. Balachandran, FTIR, FT-Raman spectral analysis and normal coordinate calculations of 2-hydroxy-3 methoxybenzaldehyde thiosemicarbozone. Indian J. Pure Appl. Phys. 42, 313–318 (2004)Google Scholar
  28. 28.
    F. Yuan, L. Ding, Y.C. Li, X.H. Li, L.Z. Fan, S.X. Zhou, D.C. Fang, S.H. Yang, Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7, 11727–11733 (2015)CrossRefGoogle Scholar
  29. 29.
    F. Yarur, J.-R. Macairan, R. Naccache, Ratiometric detection of heavy metal ions using fluorescent carbon dots. Environ. Sci. Nano 6, 1121–1130 (2019)CrossRefGoogle Scholar

Copyright information

© Qatar University and Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Centre of Excellence in Advanced MaterialsCochin University of Science and TechnologyKochiIndia
  2. 2.Department of PhysicsCochin University of Science and TechnologyKochiIndia

Personalised recommendations