Advertisement

Low temperature spin polarized tunnelling magneto-resistance in La1-xCaxMnO3 (x=0.375 and 0.625) nanoparticles

  • Ganesha Channagoudra
  • Ajay Kumar Saw
  • Vijaylakshmi DayalEmail author
Original Article

Abstract

The structural, electrical and magneto-transport properties of the La1-xCaxMnO3 (x = 0.375 and 0.625) nanoparticles (~ 50 nm) synthesized by the sol-gel method have been reported. X-Ray diffraction pattern recorded at room temperature confirms the growth of the samples in a single phase. In the absence of magnetic field, a metal to insulator (MI) transition is observed in x = 0.375 sample at 172 K (TMI), while the x = 0.625 sample shows a charge ordered (CO) behaviour at temperatures below 150 K (TCO). Both samples show a substantial negative magneto-resistance (MR). The fitting of the field-dependent MR isotherms by scaling law displays linear variation below TMI/TCO and quadratic above TMI/TCO. The fitting result suggests that a significant negative MR at low temperature is due to inter-grain spin polarized tunnelling across grain boundary and domain contribution.

Keywords

Negative magnetoresistance Metal-insulator transition Charge ordering Spin polarized tunnelling 

Notes

Acknowledgements

GC (JRF) gratefully acknowledges SERB-DST and AKS (Project fellow) to UGC DAE CSR for fellowship. We thank Dr. Mukul Gupta and Layanta Behera for XRD, Dr. Rajeev Rawat and Sachin Kumar for resistivity/MR measurements at UGC-DAE Consortium for Scientific Research, Indore.

Funding information

This work is supported by UGC DAE CSR, Indore (CSR-IC/CRS-89/2014-2018) and SERB-DST, New Delhi (EMR/2016/005424) granted to VD.

References

  1. 1.
    G.H. Jonker, J.H. VanSanten, Ferromagnetic Compounds of Mangenese with Perovskite Structure. Phys. XVI(3) (1950)Google Scholar
  2. 2.
    J.M.D. Coey, M. Viret, S. Von Molnár, Mixed-valence manganites. Adv. Phys. 58 (2009)CrossRefGoogle Scholar
  3. 3.
    K.S.R. Von Helmolt, J. Wecker, B. Holzapfel, L. Schultz, Giant Negative Magnetoresistance in Perovskite like La2/3Ba1/3MnO3 Ferromagnetic Films. Phys. Rev. Lett. 71 (1993)Google Scholar
  4. 4.
    Vijaylakshmi Dayal, S. Keshri, Structural and magnetic properties of La0.67Ca0.33Mn(1-x)FexO3 (x = 0–0.07). Solid State Commun. 142 (2007)Google Scholar
  5. 5.
    T. Sun, S. Zhao, F. Ji, X. Liu, Influence of Cu2+ Doping on the Structure, Dielectric and Magnetic Properties of NiFe2O4 Prepared by the Sol-Gel Method, Ceramics International 44 (2018)Google Scholar
  6. 6.
    X. Yu, T. Sun, Q. Chen, Y. Duan, X. Liu, Modulation of room-temperature TCR and MR in La1-xSrxMnO3 polycrystalline ceramics via Sr doping. J Sol-gel Sci Tech. 90 (2019)Google Scholar
  7. 7.
    C. Zener, Interaction between the d-Shells in the Transition Metals. II. Ferromagnetic Comyountls of Manganese with Perovskite Structure. Phys. Rev. 82 (1950)CrossRefGoogle Scholar
  8. 8.
    R.S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnach, R. Ramesh, L.H. Chen, Thousand-fold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films. Science 264 (1994)CrossRefGoogle Scholar
  9. 9.
    H.Y. Hwang, S. Cheong, N.P. Ong, B. Batlogg, Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77 (1996)Google Scholar
  10. 10.
    A. Gupta, J.Z. Sun, Spin-polarized transport and magnetoresistance in magnetic oxides. J. Magn. Magn. Mater. 200 (1999)CrossRefGoogle Scholar
  11. 11.
    Vijaylakshmi Dayal, Punith V. Kumar, Investigation of electrical resistivity and magnetotransport properties of the La0.67Ca0.33Mn0.99Fe0.01O3 perovskite oxide. Solid State Commun. 158 (2013)Google Scholar
  12. 12.
    E. Muller-Hartmann, E. Dagotto, Electronic Hamiltonian for transition-metal oxide compounds. Phys. Rev. B 54, R6819 (1996)CrossRefGoogle Scholar
  13. 13.
    Y. Tokura, Colossal magnetoresistive oxides (Gordon and Breach Science Publishers, 2000)Google Scholar
  14. 14.
    S. Kumari, V. Kumar, P. Kumar, M. Kar, L. Kumar, Structural and magnetic properties of nanocrystalline yttrium substituted cobalt ferrite synthesized by the citrate precursor technique. Adv. Powder Tech. 26 (2015)CrossRefGoogle Scholar
  15. 15.
    R.A. Young, The Rietveld Method, International Union of Crystallography, Oxford University Press, New York, (1996)Google Scholar
  16. 16.
    Y. Guo, K. Tao, Y. Liu, H. Zhou, R. Wappling, Crystal structures and giant magnetoresistance of fluoride La2/3Ca1/3MnO3 compounds. J. Alloys Compd. 296 (2000)Google Scholar
  17. 17.
    D.H. Manh, P.T. Phong, T.D. Thanh, L.V. Hong, N.X. Phuc, La0.7Ca0.3MnO3 perovskite synthesized by reactive milling method: The effect of particle size on the magnetic and electrical properties. J. Alloy. Compd. 491 (2010)Google Scholar
  18. 18.
    G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J. Alloy. Compd. 429 (2007)CrossRefGoogle Scholar
  19. 19.
    T.M. Tank, A. Bodhaye, Y.M. Mukovskii, S.P. Sanyal, Crystallographic direction dependence of electrical-transport, magneto-transport, magnetic and thermal properties of La0.7Ca0.3MnO3 single crystal. Mat. Res. Bul 83 (2016)Google Scholar
  20. 20.
    V. Punith Kumar, R.L. Hadimani, D. Paladhi, T.K. Nath, D.C. Jiles, Vijaylakshmi Dayal, Investigation of magnetic interactions, electrical and magneto-transport properties in Ga-substituted La0.4Bi0.6MnO3 perovskite manganites. Mater. Sci. Eng. B. 209 (2016)Google Scholar
  21. 21.
    C. N. R. Rao and B. Raveau, Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides, World scientific, Singapore (1998)CrossRefGoogle Scholar
  22. 22.
    A.K. Nigam, A.K. Majumdar, Magnetoresistance in canonical spin-glasses. Phys. Rev. B. 27 (1983)CrossRefGoogle Scholar

Copyright information

© Qatar University and Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of PhysicsMaharaja Institutes of Technology Mysore (Aff. VTU, Belagavi)MandyaIndia

Personalised recommendations