Skip to main content
Log in

Strategies to prevent dopamine oxidation and related cytotoxicity using various antioxidants and nitrogenation

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Dopamine (DA) plays several important roles in the brain and body and has recently been used as a bioadhesive precursor for medical applications. However, DA oxidizes immediately when exposed to oxygen and rapidly polymerizes into polydopamine (PDA), leading to oxidative stress, cytotoxicity, and loss of DA functionalities. As a result, preventing rapid oxidation of DA is of paramount importance but still remains a major challenge. Here, we report several strategies to impede DA oxidation in relevant aqueous solutions (i.e., water, PBS, and cell culture media). One strategy is based on using reducing agents or antioxidants such as glutathione in its reduced state (GSH) and sodium tetraborate (commonly known as borax). Another strategy is based on nitrogenation, a method used to preserve DA in its reduced form by creating an oxygen-free environment. Our data suggest that the antioxidant properties of GSH and borax substantially decreased DA oxidation for up to 2 months. Nitrogenation or oxygen removal further prevented DA oxidation, enhancing its shelf life for longer periods of time. When tested with mammalian cells, preventing DA oxidation with GSH dramatically improved viability of 3T3 fibroblasts and T cells. These results demonstrate that the use of antioxidants, alone or in combination with nitrogenation, can help prevent DA oxidation and improve its stability for cell-based studies or for the design and development of biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.J. F, K.M. Gray, Pharmacology and therapeutic use of low-dose dopamine. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy 6, 304–310 (1986)

    Article  Google Scholar 

  2. B.M. Varsha, N.M. C, Dopamine and dobutamine in pediatric therapy. Pharmacotherapy 9, 303–314 (1989)

    Article  Google Scholar 

  3. L.Y.W. Francis, Clinical pharmacology of dopamine agonists. Pharmacotherapy 20, 17S–25S (2000)

    Article  Google Scholar 

  4. R. Myung-Hyun, L.Y. Min, P. Jung-Ki, C.J. Wook, Mussel-inspired polydopamine-treated polyethylene separators for high-power Li-ion batteries. Adv. Mater. 23, 3066–3070 (2011)

    Article  Google Scholar 

  5. Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014)

    Article  Google Scholar 

  6. D.G. Graham, S.M. Tiffany, F.S. Vogel, The toxicity of melanin precursors. J. Investig. Dermatol. 70, 113–116 (1978)

    Article  Google Scholar 

  7. B. Uttara, A.V. Singh, P. Zamboni, R.T. Mahajan, Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 7, 65–74 (2009)

    Article  Google Scholar 

  8. M. Lalkovičová, V. Danielisová, Neuroprotection and antioxidants. Neural Regen. Res. 11, 865–874 (2016)

    Google Scholar 

  9. Y. Cong, T. Xia, M. Zou, Z. Li, B. Peng, D. Guo, Z. Deng, Mussel-inspired polydopamine coating as a versatile platform for synthesizing polystyrene/Ag nanocomposite particles with enhanced antibacterial activities. J. Mater. Chem. B 2, 3450–3461 (2014)

    Article  Google Scholar 

  10. J. Liebscher, R. Mrówczyński, H.A. Scheidt, C. Filip, N.D. Hădade, R. Turcu, A. Bende, S. Beck, Structure of polydopamine: a never-ending story? Langmuir 29, 10539–10548 (2013)

    Article  Google Scholar 

  11. Z. Gao, L. Duan, Y. Yang, W. Hu, G. Gao, Mussel-inspired tough hydrogels with self-repairing and tissue adhesion. Appl. Surf. Sci. 427, 74–82 (2018)

    Article  Google Scholar 

  12. L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L.-T. Weng, H. Zhang, Y. Tang, F. Ren, C. Zhao, G. Sun, R. Liang, Z. Li, Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11, 2561–2574 (2017)

    Article  Google Scholar 

  13. Y. Yang, P. Qi, Y. Ding, M.F. Maitz, Z. Yang, Q. Tu, K. Xiong, Y. Leng, N. Huang, A biocompatible and functional adhesive amine-rich coating based on dopamine polymerization. J. Mater. Chem. B 3, 72–81 (2015)

    Article  Google Scholar 

  14. R.H. Siddique, Y.J. Donie, G. Gomard, S. Yalamanchili, T. Merdzhanova, U. Lemmer, H. Hölscher, Bioinspired phase-separated disordered nanostructures for thin photovoltaic absorbers. Sci. Adv. 3, e1700232 (2017)

    Article  Google Scholar 

  15. E. Mazario, J. Sanchez-Marcos, N. Menendez, P. Herrasti, M. Garcia-Hernandez, A. Munoz-Bonilla, One-pot electrochemical synthesis of polydopamine coated magnetite nanoparticles. RSC Adv. 4, 48353–48361 (2014)

    Article  Google Scholar 

  16. M.-V. Clement, L.H. Long, J. Ramalingam, B. Halliwell, The cytotoxicity of dopamine may be an artefact of cell culture. J. Neurochem. 81, 414–421 (2002)

    Article  Google Scholar 

  17. D. Offen, I. Ziv, S. Gorodin, A. Barzilai, Z. Malik, E. Melamed, Dopamine-induced programmed cell death in mouse thymocytes. Biochim. Biophys. Acta (BBA) Mol. Cell Res. 1268, 171–177 (1995)

    Article  Google Scholar 

  18. J. Segura-Aguilar, I. Paris, in Handbook of Neurotoxicity, ed. by R. M. Kostrzewa. (Springer New York, New York, NY, 2014), pp. 865–883

    Google Scholar 

  19. B. Halliwell, Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett. 540, 3–6 (2003)

    Article  Google Scholar 

  20. J.K. Andersen, Oxidative stress in neurodegeneration: cause or consequence? Nat. Rev. Neurosci. 10, S18 (2004)

    Article  Google Scholar 

  21. L. Shi, S. Santhanakrishnan, Y.S. Cheah, M. Li, C.L.L. Chai, K.G. Neoh, One-pot UV-triggered o-nitrobenzyl dopamine polymerization and coating for surface antibacterial application. ACS Appl. Mater. Interfaces 8, 33131–33138 (2016)

    Article  Google Scholar 

  22. D. Offen, I. Ziv, H. Sternin, E. Melamed, A. Hochman, Prevention of dopamine-induced cell death by thiol antioxidants: possible implications for treatment of Parkinson’s disease. Exp. Neurol. 141, 32–39 (1996)

    Article  Google Scholar 

  23. Y.H. Ding, M. Floren, W. Tan, Mussel-inspired polydopamine for bio-surface functionalization. Biosurface Biotribol. 2, 121–136 (2016)

    Article  Google Scholar 

  24. M. Bisaglia, S. Mammi, L. Bubacco, Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with α-synuclein. J. Biol. Chem. 282, 15597–15605 (2007)

    Article  Google Scholar 

  25. S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, H. Lee, Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Adv. Funct. Mater. 22, 4711–4717 (2012)

    Article  Google Scholar 

  26. H. Sies, Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4, 180–183 (2015)

    Article  Google Scholar 

  27. H. Liu, T.A. Bruton, F.M. Doyle, D.L. Sedlak, In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV) containing oxides and aquifer materials. Environ. Sci. Technol. 48, 10330–10336 (2014)

    Article  Google Scholar 

  28. P. Munoz, S. Huenchuguala, I. Paris, J. Segura-Aguilar, Dopamine oxidation and autophagy. Park. Dis. 2012, 13 (2012)

    Google Scholar 

  29. W.D. Bush, J. Garguilo, F.A. Zucca, A. Albertini, L. Zecca, G.S. Edwards, R.J. Nemanich, J.D. Simon, The surface oxidation potential of human neuromelanin reveals a spherical architecture with a pheomelanin core and a eumelanin surface. Proc. Natl. Acad. Sci. 103, 14785–14789 (2006)

    Article  Google Scholar 

  30. M.E. Rice, Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 23, 209–216 (2000)

    Article  Google Scholar 

  31. V. Veeramani, R. Madhu, S.-M. Chen, M. Sivakumar, Flower-like nickel-cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain. Chem. Eng. 4, 5013–5020 (2016)

    Article  Google Scholar 

  32. C. Lei, F. Han, D. Li, W.-C. Li, Q. Sun, X.-Q. Zhang, A.-H. Lu, Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. Nanoscale 5, 1168–1175 (2013)

    Article  Google Scholar 

  33. I. Miyazaki, M. Asanuma, Dopaminergic neuron-specific oxidative stress caused by dopamine Itself, vol 62 (2008), pp. 141–150

    Google Scholar 

  34. S.J. Padayatty, A. Katz, Y. Wang, P. Eck, O. Kwon, J.-H. Lee, S. Chen, C. Corpe, A. Dutta, S.K. Dutta, M. Levine, Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22, 18–35 (2003)

    Article  Google Scholar 

  35. P. Kesarwani, A.K. Murali, A.A. Al-Khami, S. Mehrotra, Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid. Redox Signal. 18, 1497–1534 (2013)

    Article  Google Scholar 

  36. I. Yerbolat Maratovich, K. Nurgul Narimanovna, I. Irina Vladimirovna, I. Marat Kapenovich, Protective action of sodium tetraborate on chrom-induced hepato- and genotoxicity in rats. Biomed. Pharmacol. J. 10, 1239–1247 (2017)

    Article  Google Scholar 

  37. H.J. Forman, H. Zhang, A. Rinna, Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009)

    Article  Google Scholar 

  38. D.R. Dreyer, D.J. Miller, B.D. Freeman, D.R. Paul, C.W. Bielawski, Elucidating the structure of poly(dopamine). Langmuir 28, 6428–6435 (2012)

    Article  Google Scholar 

Download references

Funding

S.A.B. received support from the Northeastern University Seed Grant/Proof of Concept Tier 1 Research Grant, Burroughs Wellcome Fund (BWF) award, Thomas Jefferson/Face foundations award, DFCI/NU Joint Program Grant, and NSF CAREER award (1847843). N.A. acknowledges the support from the American Heart Association (AHA, 16SDG31280010) and the National Institutes of Health (NIH) (R01EB023052; R01HL140618), Northeastern University, and the startup funds provided by the Department of Chemical Engineering, College of Engineering at Northeastern University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasim Annabi or Sidi A. Bencherif.

Electronic supplementary material

ESM 1

(PDF 1372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, D., Colombani, T., Mohammed, H.S. et al. Strategies to prevent dopamine oxidation and related cytotoxicity using various antioxidants and nitrogenation. emergent mater. 2, 209–217 (2019). https://doi.org/10.1007/s42247-019-00037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00037-5

Keywords

Navigation