Skip to main content
Log in

Graphical method based on modified maximum force criterion to indicate forming limit curves of 22MnB5 boron steel sheets at elevated temperatures

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A new approach for predicting forming limit curves (FLCs) at elevated temperatures was proposed herein. FLCs are often used to predict failure and determine the optimal forming parameters of automotive parts. First, a graphical method based on a modified maximum force criterion was applied to estimate the FLCs of 22MnB5 boron steel sheets at room temperature using various hardening laws. Subsequently, the predicted FLC data at room temperature were compared with corresponding data obtained from Nakazima’s tests to obtain the best prediction. To estimate the FLC at elevated temperatures, tensile tests were conducted at various temperatures to determine the ratios of equivalent fracture strains between the corresponding elevated temperatures and room temperature. FLCs at elevated temperatures could be established based on obtained ratios. However, the predicted FLCs at elevated temperatures did not agree well with the corresponding FLC experimental data of Zhou et al. A new method was proposed herein to improve the prediction of FLCs at elevated temperatures. An FLC calculated at room temperature was utilized to predict the failure of Nakazima’s samples via finite element simulation. Based on the simulation results at room temperature, the mathematical relationships between the equivalent ductile fracture strain versus stress triaxiality and strain ratio were established and then combined with ratios between elevated and room temperatures to calculate the FLCs at different temperatures. The predicted FLCs at elevated temperatures agree well with the corresponding experimental FLC data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Robert, A. Delamézière, P. Dal Santo, J.L. Batoz, J. Mater. Process. Technol. 212 (2012) 1123–1131.

    Article  Google Scholar 

  2. E. Fictorie, A.H. van den Boogaard, E.H. Atzema, Int. J. Mater. Form. 3 (2010) 1179–1182.

    Article  Google Scholar 

  3. Z.M. Yue, H. Badreddine, T. Dang, K. Saanouni, A.E. Tekkaya, J. Mater. Process. Technol. 218 (2015) 80–88.

    Article  Google Scholar 

  4. Z. Marciniak, K. Kuczyński, Int. J. Mech. Sci. 9 (1967) 609–620.

    Article  Google Scholar 

  5. H.S. Son, Y.S. Kim, Int. J. Mech. Sci. 45 (2003) 1625–1643.

    Article  Google Scholar 

  6. M.C. Butuc, J.J. Gracio, A. Barata da Rocha, J. Mater. Process. Technol. 142 (2003) 714–724.

    Article  Google Scholar 

  7. P. Hora, L. Tong, B. Berisha, Int. J. Mater. Form. 6 (2013) 267–279.

    Article  Google Scholar 

  8. D. Banabic, H. Aretz, L. Paraianu, P. Jurco, Modelling Simul. Mater. Sci. Eng. 13 (2005) 759–769.

    Article  Google Scholar 

  9. N. Manopulo, P. Hora, P. Peters, M. Gorji, F. Barlat, Int. J. Plasticity 75 (2015) 189–203.

    Article  Google Scholar 

  10. H. Aretz, Modelling Simul. Mater. Sci. Eng. 12 (2004) 677–692.

    Article  Google Scholar 

  11. Q.T. Pham, B.H. Lee, K.C. Park, Y.S. Kim, Int. J. Mech. Sci. 140 (2018) 521–536.

    Article  Google Scholar 

  12. Q.T. Pham, D.T. Nguyen, J.J. Kim, Y.S. Kim, Key Eng. Mater. 794 (2019) 55–62.

    Article  Google Scholar 

  13. T.T. Luyen, Q.T. Pham, Y.S. Kim, D.T. Nguyen, J. Korean Soc. Precis. Eng. 36 (2019) 883–890.

    Article  Google Scholar 

  14. N. Duc-Toan, K. Young-Suk, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 234 (2019) 189–203.

    Article  Google Scholar 

  15. M. Merklein, J. Lecher, V. Gödel, S. Bruschi, A. Ghiotti, A. Turetta, Key Eng. Mater. 344 (2007) 79–86.

    Article  Google Scholar 

  16. J. Zhou, Y. Mu, B. Wang, Int. J. Mech. Sci. 133 (2017) 457–468.

    Article  Google Scholar 

  17. J. Lemaitre, J. Eng. Mater. Technol. 107 (1985) 83–89.

    Article  Google Scholar 

  18. P. Hu, D. Shi, L. Ying, G. Shen, W. Liu, Mater. Des. 69 (2015) 141–152.

    Article  Google Scholar 

  19. B.T. Tang, S. Bruschi, A. Ghiotti, P.F. Bariani, J. Mater. Process. Technol. 228 (2016) 76–87.

    Article  Google Scholar 

  20. D.Y. Shi, L. Ying, P. Hu, J.D. Lu, X. Zhao, W.Q. Liu, AIP Conf. Proc. 1532, (2013) 406–413.

    Article  Google Scholar 

  21. R.S. Lee, Y.K. Lin, T.W. Chien, Procedia Eng. 81 (2014) 1682–1688.

    Article  Google Scholar 

  22. J. Min, J. Lin, J. Li, W. Bao, Comput. Mater. Sci. 49 (2010) 326–332.

    Article  Google Scholar 

  23. H. Li, X. Wu, G. Li, J. Mater. Eng. Perform. 22 (2013) 2131–2140.

    Article  Google Scholar 

  24. F.F. Li, M.W. Fu, J.P. Lin, X.N. Wang, Int. J. Adv. Manuf. Technol. 71 (2014) 297–306.

    Article  Google Scholar 

  25. H. Liu, J. Cui, K. Jiang, G. Zhou, J. Mater. Eng. Perform. 25 (2016) 4894–4901.

    Article  Google Scholar 

  26. S.P. Keeler, W.A. Backofen, Trans. ASM 56 (1963) 25–48.

    Google Scholar 

  27. S.S. Hecker, Sheet Met. Ind. 52 (1975) 671–676.

    Google Scholar 

  28. R. Hashemi, H. Mamusi, A. Masoumi, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 228 (2014) 1582–1591.

    Article  Google Scholar 

  29. Z. Shao, Q. Bai, N. Li, J. Lin, Z. Shi, M. Stanton, D. Watson, T. Dean, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232 (2018) 465–474.

    Article  Google Scholar 

  30. Y.W. Lee, Fracture prediction in metal sheets, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005.

    Google Scholar 

  31. R. Hill, Proc. R. Soc. Lond. A 193 (1948) 281–297.

    Article  Google Scholar 

  32. H.W. Swift, J. Mech. Phys. Solids 1 (1952) 1–18.

    Article  Google Scholar 

  33. P. Ludwik, Elemente der Technologischen Mechanik, J. Springer, 1909.

  34. E. Voce, J. Inst. Metals 74 (1948) 537–562.

    Google Scholar 

  35. D. Li, G. Wang, H. Liu, Q. Chen, in: 2016 International Conference on Advanced Manufacture Technology and Industrial Application, DEStech Trans. Eng. Technol. Res. Shanghai, China, 2016, pp. 292–300.

  36. D. Hibbit, B. Karlsson, P. Sorensen, ABAQUS/CAE user’s manual, Ver. 6.10.1. ABAQUS Inc, 2010.

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 107.02-2019.300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Toan Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luyen, TT., Pham, QT., Mac, TB. et al. Graphical method based on modified maximum force criterion to indicate forming limit curves of 22MnB5 boron steel sheets at elevated temperatures. J. Iron Steel Res. Int. 28, 1009–1018 (2021). https://doi.org/10.1007/s42243-021-00567-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00567-5

Keywords

Navigation