Advertisement

Effect of intercritical deformation on tensile performance of a low-carbon Si–Mn steel processed by quenching and bainitic partitioning

  • 30 Accesses

Abstract

The effect of intercritical deformation on retained austenite and tensile performance of a low-carbon Si–Mn steel in modified quenching and bainitic partitioning processes was evaluated. The results showed that the intercritical deformation can play a positive role in stabilizing and refining the retained austenite, and possessed promising potential in balancing tensile strength and ductility of multiphase high-strength steels. The experimental low-carbon Si–Mn steel exhibited multiphase configuration comprising polygonal ferrite, granular bainite and granular structure after two different modified quenching and bainitic partitioning processes, and the bainitic ferrite laths got refined by intercritical deformation. The volume fraction of retained austenite in film-like and blocky morphology was increased from 11.5% to 13.9% due to applied intercritical deformation, and the larger amount of retained austenite provided the sufficient transformation-induced plasticity effect and resulted in enhanced work hardening degree; in response, enhanced ultimate tensile strength 1260 MPa and fracture elongation 22.1% were obtained, leading to increased product of strength and elongation in value of 27.7 GPa% compared to 20.8 GPa% of undeformed structure.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. [1]

    J.W. Zhao, Z.Y. Jiang, Prog. Mater. Sci. 94 (2018) 174–242.

  2. [2]

    H.K.D.H. Bhadeshia, Sci. Technol. Adv. Mater. 14 (2013) 014202.

  3. [3]

    P. Jacques, F. Delannay, X. Cornet, Ph. Harlet, J. Ladriere, Metall. Mater. Trans. A 29 (1998) 2383–2393.

  4. [4]

    M.C. Mcgrath, D.C. Van Aken, N.I. Medvedeva, J.E. Medvedeva, Metall. Mater. Trans. A 44 (2013) 4634–4643.

  5. [5]

    J.G. Speer, D.K. Matlock, B.C.D. Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611–2622.

  6. [6]

    A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, E. De Moor, Acta Mater. 56 (2008) 16–22.

  7. [7]

    J.F. Wang, K.J. Yao, A.L. Korich, S.G. Li, S.G. Ma, H.J. Ploehn, P.M. Iovien, C.P. Wang, F.X. Chu, C.B. Tang, J. Polym. Sci. A 49 (2011) 3728–3738.

  8. [8]

    E.J. Seo, L. Cho, Y. Estrin, B.C.D. Cooman, Acta Mater. 113 (2016) 124–139.

  9. [9]

    C. Garciamateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 1821–1825.

  10. [10]

    F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.

  11. [11]

    Y. Toji, H. Matsuda, M. Herbig, P.P. Cjoi, D. Raabe, Acta Mater. 65 (2014) 215–228.

  12. [12]

    J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.

  13. [13]

    H.P. Liu, X.J. Jin, H. Dong, J. Shi, Mater. Charact. 62 (2011) 223–227.

  14. [14]

    C.Y. Wang, Y. Chang, J. Yang, K. Zhao, H. Dong, Acta. Metall. Sin. 51 (2015) 913–919.

  15. [15]

    M. Xu, Y.G. Yang, J.Y. Chen, D. Tang, H.T. Jiang, Z.L. Mi, J. Iron Steel Res. Int. 24 (2017) 1125–1130.

  16. [16]

    Y.Q. Tian, M.S. Zhang, R. Li, Y.L. Wei, J.Y. Song, X.P. Zheng, L.S. Chen, Trans. Mater. Heat Treat. 37 (2016) 161–167.

  17. [17]

    K. Sugimoto, N. Usui, M. Kobayashi, S. Hashimoto, ISIJ Int. 32 (1992) 1311–1318.

  18. [18]

    K. Sugimoto, T. Iida, J. Sakaguchi, T. Kashima, ISIJ Int. 40 (2000) 902–908.

  19. [19]

    V. Biss, R.L. Cryderman, Metall. Mater. Trans. B 2 (1971) 2267–2276.

  20. [20]

    O.A. Zambrano, J. Mater. Sci. 53 (2018) 14003–14062.

  21. [21]

    H.P. Liu, H. Sun, B. Liu, D.Z. Li, F. Sun, X.J. Jin, Mater. Des. 83 (2015) 760–767.

  22. [22]

    S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Metall. Mater. Trans. A 47 (2016) 49–58.

  23. [23]

    Z.P. Hu, Y.B. Xu, X.D. Tan, J. Northeast. Univ. Nat. Sci. 37 (2016) 179–183.

  24. [24]

    L.S. Chen, Y. Li, M.S. Zhang, Y.Q. Tian, X.P. Zheng, Y. Xu, S.H. Zhang, Acta. Metall. Sin. 53 (2017) 1418–1426.

  25. [25]

    S.S. Zhu, Z.Z. Wang, X.Y. Mao, B.S. Zhang, Q.S. Dong, Z.Y. Bao, Mater. Rep. 30 (2016) 122–126.

  26. [26]

    S. Sun, M. Pugh, Mater. Sci. Eng. A 276 (2000) 167–174.

  27. [27]

    M.J. Santofimia, L. Zhao, R. Petrov, C. Kwakernaak, W.G. Sloof, J. Sietsma, Acta Mater. 59 (2011) 6059–6068.

  28. [28]

    R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, C.X. Huang, Mater. Sci. Eng. A 583 (2013) 84–88.

  29. [29]

    H. Kitahara, N. Tsuji, Y. Minamino, Mater. Sci. Eng. A 438–440 (2006) 233–236.

  30. [30]

    C.H. Song, H. Yu, L.L. Li, T. Zhou, J. Lu, X.H. Liu, Mater. Sci. Eng. A 670 (2016) 326–334.

  31. [31]

    D.D. Knijf, R. Petrov, C. Föjer, L.A.I. Kestens, Mater. Sci. Eng. A 615 (2014) 107–115.

  32. [32]

    Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, H. Ding, Mater. Sci. Eng. A 673 (2016) 63–72.

  33. [33]

    Z.J. Xie, C.J. Shang, W.H. Zhou, B. Wu, Acta. Metall. Sin. 52 (2016) 224–232.

  34. [34]

    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Gao, C.J. Shang, Mater. Des. 59 (2014) 193–198.

  35. [35]

    J. Chiang, B. Lawrence, J.D. Boyd, A.K. Pilkey, Mater. Sci. Eng. A 528 (2011) 4516–4521.

  36. [36]

    J.W. Ma, Q. Lu, L. Sun, Y. Shen, Metall. Mater. Trans. A 49 (2018) 4404–4408.

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (Nos. 51574107 and U1860105), Natural Science Foundation of Hebei Province (No. E2017209048), and Science and Technology Research Project for Institutions of Higher Learning of Hebei Province (No. ZD2019064) for grant and financial support.

Author information

Correspondence to Lian-sheng Chen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Cao, Z., Li, W. et al. Effect of intercritical deformation on tensile performance of a low-carbon Si–Mn steel processed by quenching and bainitic partitioning. J. Iron Steel Res. Int. (2020) doi:10.1007/s42243-019-00357-0

Download citation

Keywords

  • Bainitic steel
  • Intercritical deformation
  • Retained austenite
  • Instantaneous work hardening index
  • Transformation-induced plasticity effect