Effects of Sm content on crystallized structure and magnetic properties of Co80 − xSmxB20 amorphous alloys
- 9 Downloads
Abstract
The formation, thermal stability, crystallized structure, and magnetic properties of melt-spun Co80−xSmxB20 (x = 0–20) amorphous alloys have been investigated. A single amorphous phase is formed for the alloys with x = 0–15. The first crystallization temperature gradually increases from 670 to 955 K as x increases from 0 to 10, and decreases to 836 K when x = 15. After optimum annealing, the nanocomposite structure consisting of SmCo12B6 + fcc-Co + Sm2Co17 phases is formed for the alloys with x = 5 and 7.5, and SmCo12B6 + Sm2Co17 + SmCo3, SmCo12B6 + Sm2Co17 + SmCo4B, and SmCo12B6 + SmCo4B phases are formed for the alloys with x = 10, 12.5, and 15, respectively. The coercivity of the annealed alloys increases remarkably from 103.5 to 1249.4 kA m−1 as x increases from 5 to 15, while the magnetization at the applied field of 2.0 T decreases from 0.51 to 0.16 T. The improved magnetic hardness with rising Sm content is attributed to the formation of the hard magnetic phases with higher magnetocrystalline anisotropy and the increase in their volume fraction.
Keywords
Co–Sm–B alloy Melt-spun Amorphous alloy Crystallized structure Magnetic propertyNotes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871039, 51571047, and 51771039), and the Fundamental Research Funds for the Central Universities (DUT17ZD212).
References
- [1]N. Jones, Nature 472 (2011) 22–23.CrossRefGoogle Scholar
- [2]S. Sugimoto, J. Phys. D: Appl. Phys. 44 (2011) 064001.CrossRefGoogle Scholar
- [3]X. Li, L. Lou, W. Song, G. Huang, F. Hou, Q. Zhang, H.T. Zhang, J. Xiao, B. Wen, X. Zhang, Adv. Mater. 29 (2017) 1606430.CrossRefGoogle Scholar
- [4]L. Withanawasam, G.C. Hadjipanayis, R.F. Krause, J. Appl. Phys. 75 (1994) 6646–6648.CrossRefGoogle Scholar
- [5]J.H. Yi, Rare Metals 33 (2014) 633–640.CrossRefGoogle Scholar
- [6]O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821–842.CrossRefGoogle Scholar
- [7]T. Saito, D. Nishio-Hamane, J. Alloy. Compd. 585 (2014) 423–427.CrossRefGoogle Scholar
- [8]X. Jiang, B. Balamurugan, J.E. Shield, J. Alloy. Compd. 617 (2014) 479–484.CrossRefGoogle Scholar
- [9]G.C. Hadjipanayis, J. Magn. Magn. Mater. 200 (1999) 373–391.CrossRefGoogle Scholar
- [10]Z.W. Liu, H.A. Davies, J. Phys. D: Appl. Phys. 42 (2009) 145006.CrossRefGoogle Scholar
- [11]B. Balamurugan, D.J. Sellmyer, G.C. Hadjipanayis, R. Skomski, Scripta Mater. 67 (2012) 542–547.CrossRefGoogle Scholar
- [12]P. Narayan, J.P. Liu, J. Phys. D: Appl. Phys. 46 (2013) 043001.CrossRefGoogle Scholar
- [13]S. Bance, H. Oezelt, T. Schrefl, M. Winklhofer, G. Hrkac, G. Zimanyi, O. Gutfleisch, R.F.L. Evans, R.W. Chantrell, T. Shoji, M. Yano, N. Sakuma, A. Kato, A. Manabe, Appl. Phys. Lett. 105 (2014) 192401.CrossRefGoogle Scholar
- [14]E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27 (1991) 3588–3600.CrossRefGoogle Scholar
- [15]W. Zhang, P. Sharma, K. Shin, D.V. Louzguine, A. Inoue, Scripta Mater. 54 (2006) 431–435.CrossRefGoogle Scholar
- [16]R. Coehoorn, D.B. Demooij, C. Dewaard, J. Magn. Magn. Mater. 80 (1989) 101–104.CrossRefGoogle Scholar
- [17]A. Inoue, A. Takeuchi, A. Makino, T. Masumoto, Mater. Trans. JIM 36 (1995) 962–971.CrossRefGoogle Scholar
- [18]W. Zhang, M. Matsusita, A. Inoue, Mater. Trans. 42 (2001) 1543–1546.CrossRefGoogle Scholar
- [19]W. Zhang, A. Inoue, Appl. Phys. Lett. 80 (2002) 1610–1612.CrossRefGoogle Scholar
- [20]S.K. Chen, M.S. Chu, J. L. Tsai, IEEE Trans. Magn. 32 (1996) 4419–4421.CrossRefGoogle Scholar
- [21]A. Inoue, A. Kitamura, T. Masumoto, Trans. Jpn. Inst. Met. 20 (1979) 404–406.CrossRefGoogle Scholar
- [22]D.V. Louzguine-Luzgin, A.I. Bazlov, S.V. Ketov, A. Inoue, Mater. Chem. Phys. 162 (2015) 197–206.CrossRefGoogle Scholar
- [23]Y. Chen, X. Li, X.L. Chen, J.K. Liang, G.H. Rao, Q.L. Liu, J. Alloy. Compd. 305 (2000) 216–218.CrossRefGoogle Scholar
- [24]H. Ido, K. Konno, H. Ogata, K. Sugiyama, H. Hachino, M. Date, K. Maki, J. Appl. Phys. 70 (1991) 6128-6130.CrossRefGoogle Scholar
- [25]A Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817–2829.CrossRefGoogle Scholar
- [26]A. Inoue, Acta Mater. 48 (2000) 279–306.CrossRefGoogle Scholar
- [27]E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. London A 240 (1948) 599–642.CrossRefGoogle Scholar
- [28]R. Skomski, J.M.D. Coey, Scripta Mater. 112 (2016) 3–8.CrossRefGoogle Scholar
- [29]N. Lu, X. Song, J. Zhang, Nanotechnology 21 (2010) 115708.CrossRefGoogle Scholar
- [30]B. Roebuck, E.G. Bennett, E.A. Almond, Int. J. Refract. Hard Met. 3 (1984) 35–40.Google Scholar