Advertisement

Effects of Sm content on crystallized structure and magnetic properties of Co80 − xSmxB20 amorphous alloys

  • Lei-qiang Lai
  • Yan-hui Li
  • Feng Bao
  • Wei ZhangEmail author
Original Paper
  • 9 Downloads

Abstract

The formation, thermal stability, crystallized structure, and magnetic properties of melt-spun Co80xSmxB20 (x = 0–20) amorphous alloys have been investigated. A single amorphous phase is formed for the alloys with x = 0–15. The first crystallization temperature gradually increases from 670 to 955 K as x increases from 0 to 10, and decreases to 836 K when x = 15. After optimum annealing, the nanocomposite structure consisting of SmCo12B6 + fcc-Co + Sm2Co17 phases is formed for the alloys with x = 5 and 7.5, and SmCo12B6 + Sm2Co17 + SmCo3, SmCo12B6 + Sm2Co17 + SmCo4B, and SmCo12B6 + SmCo4B phases are formed for the alloys with x = 10, 12.5, and 15, respectively. The coercivity of the annealed alloys increases remarkably from 103.5 to 1249.4 kA m−1 as x increases from 5 to 15, while the magnetization at the applied field of 2.0 T decreases from 0.51 to 0.16 T. The improved magnetic hardness with rising Sm content is attributed to the formation of the hard magnetic phases with higher magnetocrystalline anisotropy and the increase in their volume fraction.

Keywords

Co–Sm–B alloy Melt-spun Amorphous alloy Crystallized structure Magnetic property 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51871039, 51571047, and 51771039), and the Fundamental Research Funds for the Central Universities (DUT17ZD212).

References

  1. [1]
    N. Jones, Nature 472 (2011) 22–23.CrossRefGoogle Scholar
  2. [2]
    S. Sugimoto, J. Phys. D: Appl. Phys. 44 (2011) 064001.CrossRefGoogle Scholar
  3. [3]
    X. Li, L. Lou, W. Song, G. Huang, F. Hou, Q. Zhang, H.T. Zhang, J. Xiao, B. Wen, X. Zhang, Adv. Mater. 29 (2017) 1606430.CrossRefGoogle Scholar
  4. [4]
    L. Withanawasam, G.C. Hadjipanayis, R.F. Krause, J. Appl. Phys. 75 (1994) 6646–6648.CrossRefGoogle Scholar
  5. [5]
    J.H. Yi, Rare Metals 33 (2014) 633–640.CrossRefGoogle Scholar
  6. [6]
    O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23 (2011) 821–842.CrossRefGoogle Scholar
  7. [7]
    T. Saito, D. Nishio-Hamane, J. Alloy. Compd. 585 (2014) 423–427.CrossRefGoogle Scholar
  8. [8]
    X. Jiang, B. Balamurugan, J.E. Shield, J. Alloy. Compd. 617 (2014) 479–484.CrossRefGoogle Scholar
  9. [9]
    G.C. Hadjipanayis, J. Magn. Magn. Mater. 200 (1999) 373–391.CrossRefGoogle Scholar
  10. [10]
    Z.W. Liu, H.A. Davies, J. Phys. D: Appl. Phys. 42 (2009) 145006.CrossRefGoogle Scholar
  11. [11]
    B. Balamurugan, D.J. Sellmyer, G.C. Hadjipanayis, R. Skomski, Scripta Mater. 67 (2012) 542–547.CrossRefGoogle Scholar
  12. [12]
    P. Narayan, J.P. Liu, J. Phys. D: Appl. Phys. 46 (2013) 043001.CrossRefGoogle Scholar
  13. [13]
    S. Bance, H. Oezelt, T. Schrefl, M. Winklhofer, G. Hrkac, G. Zimanyi, O. Gutfleisch, R.F.L. Evans, R.W. Chantrell, T. Shoji, M. Yano, N. Sakuma, A. Kato, A. Manabe, Appl. Phys. Lett. 105 (2014) 192401.CrossRefGoogle Scholar
  14. [14]
    E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27 (1991) 3588–3600.CrossRefGoogle Scholar
  15. [15]
    W. Zhang, P. Sharma, K. Shin, D.V. Louzguine, A. Inoue, Scripta Mater. 54 (2006) 431–435.CrossRefGoogle Scholar
  16. [16]
    R. Coehoorn, D.B. Demooij, C. Dewaard, J. Magn. Magn. Mater. 80 (1989) 101–104.CrossRefGoogle Scholar
  17. [17]
    A. Inoue, A. Takeuchi, A. Makino, T. Masumoto, Mater. Trans. JIM 36 (1995) 962–971.CrossRefGoogle Scholar
  18. [18]
    W. Zhang, M. Matsusita, A. Inoue, Mater. Trans. 42 (2001) 1543–1546.CrossRefGoogle Scholar
  19. [19]
    W. Zhang, A. Inoue, Appl. Phys. Lett. 80 (2002) 1610–1612.CrossRefGoogle Scholar
  20. [20]
    S.K. Chen, M.S. Chu, J. L. Tsai, IEEE Trans. Magn. 32 (1996) 4419–4421.CrossRefGoogle Scholar
  21. [21]
    A. Inoue, A. Kitamura, T. Masumoto, Trans. Jpn. Inst. Met. 20 (1979) 404–406.CrossRefGoogle Scholar
  22. [22]
    D.V. Louzguine-Luzgin, A.I. Bazlov, S.V. Ketov, A. Inoue, Mater. Chem. Phys. 162 (2015) 197–206.CrossRefGoogle Scholar
  23. [23]
    Y. Chen, X. Li, X.L. Chen, J.K. Liang, G.H. Rao, Q.L. Liu, J. Alloy. Compd. 305 (2000) 216–218.CrossRefGoogle Scholar
  24. [24]
    H. Ido, K. Konno, H. Ogata, K. Sugiyama, H. Hachino, M. Date, K. Maki, J. Appl. Phys. 70 (1991) 6128-6130.CrossRefGoogle Scholar
  25. [25]
    A Takeuchi, A. Inoue, Mater. Trans. 46 (2005) 2817–2829.CrossRefGoogle Scholar
  26. [26]
    A. Inoue, Acta Mater. 48 (2000) 279–306.CrossRefGoogle Scholar
  27. [27]
    E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. London A 240 (1948) 599–642.CrossRefGoogle Scholar
  28. [28]
    R. Skomski, J.M.D. Coey, Scripta Mater. 112 (2016) 3–8.CrossRefGoogle Scholar
  29. [29]
    N. Lu, X. Song, J. Zhang, Nanotechnology 21 (2010) 115708.CrossRefGoogle Scholar
  30. [30]
    B. Roebuck, E.G. Bennett, E.A. Almond, Int. J. Refract. Hard Met. 3 (1984) 35–40.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Lei-qiang Lai
    • 1
  • Yan-hui Li
    • 1
  • Feng Bao
    • 1
  • Wei Zhang
    • 1
    Email author
  1. 1.Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and EngineeringDalian University of TechnologyDalianChina

Personalised recommendations