Effects of yttrium and zirconium additions on inclusions and mechanical properties of a reduced activation ferritic/martensitic steel

  • Dong-ping Zhan
  • Guo-xing QiuEmail author
  • Chang-sheng Li
  • Min Qi
  • Zhou-hua Jiang
  • Hui-shu Zhang
Original Paper


The effects of two alloying elements, i.e., yttrium (Y) and zirconium (Zr), on the inclusion, microstructure, tensile property and impact toughness of reduced activation ferritic/martensitic (RAFM) steel are analyzed. The size and number of particles were determined by optical microscopy, and the particle types were examined by scanning electron microscopy. The size of ~ 20% and ~ 85% of the inclusions lied in the range of 0.5–1.0 μm and 0.5–3.0 μm, respectively. In Y- and Y–Zr-containing specimens, the density of the fine inclusions, with a size less than 0.5 μm, was found to be 1.06 × 1017 and 9.82 × 1016 m−3, respectively. All specimens were normalized at 1323 K for 30 min and tempered at 923 and 1023 K for 90 min, resulting in the formation of tempered martensite with M23C6 carbides and MX precipitates. Zr-containing RAFM steel tempered at 923 K formed M23C6 carbides and nano-sized carbides with Zr, conferring superior strength balance and impact toughness. The yield strength of alloy reached 695 MPa, and a low ductile–brittle transition temperature of 238 K was maintained.


9Cr oxide-dispersion-strengthened steel Inclusion Mechanical property DBTT Yttrium Zirconium 



The authors are grateful for the support from the National Natural Science Foundation of China (Nos. 51874081 and 51574063) and Fundamental Research Funds for the Central Universities (N150204012).


  1. [1]
    J. Fuzeau, M. Vasudevan, V. Maduraimuthu, Trans. Indian Inst. Met. 69 (2016) 1493–1499.CrossRefGoogle Scholar
  2. [2]
    R. Kirana, S. Raju, R. Mythili, S. Saibaba, T. Jayakumar, E.R. Kumar, Steel Res. Int. 86 (2015) 825–840.CrossRefGoogle Scholar
  3. [3]
    H. Fu, T. Nagasaka, T. Muroga, A. Kimura, S. Ukai, Plasma and Fusion Research 11 (2017) 1–5.Google Scholar
  4. [4]
    A. Paúl, E. Alves, L.C. Alves, C. Marques, R. Lindau, J.A. Odriozola, Fusion Eng. Des. 75-79 (2005) 1061–1065.CrossRefGoogle Scholar
  5. [5]
    S.Y. Zhong, V. Klosek, Y.D. Carlan, M.H. Mathon, J. Mater. Sci. 51 (2016) 2540–2549.CrossRefGoogle Scholar
  6. [6]
    R. Lindau, A. Möslang, M. Rieth, M. Klimiankou, E. Materna-Morris, A. Alamo, A-A.F. Tavassoli, C. Cayron, A-M. Lancha, P. Fernandez, N. Baluc, R. Schaublin, E. Diegele, G. Filacchioni, J.W. Rensman, B.V.D. Schaaf, E. Lucon, W. Dietz, Fusion Eng. Des. 75 (2005) 989–996.CrossRefGoogle Scholar
  7. [7]
    M.J.R. Sandim, I.R.S. Filho, E.H. Bredda, A. Kostka, D. Raabe, H.R.Z. Sandim, J. Nucl. Mater. 484 (2017) 283–287.CrossRefGoogle Scholar
  8. [8]
    N. Ordas, E. Gil, A. Cintins, V. Castro, T. Leguey, I. Iturriza, J. Purans, A. Anspoks, A. Kuzmin, A. Kalinko, J. Nucl. Mater. 504 (2018) 8–22.CrossRefGoogle Scholar
  9. [9]
    Z. Oksiuta, M. Lewandowska, K.J. Kurzydlowski, N. Baluc, J. Nucl. Mater. 409 (2009) 86–93.CrossRefGoogle Scholar
  10. [10]
    S.Y. Zhang, J. Ribis, N. Lochet, Y.D. Carlan, V. Klosek, V. Ji, M.H. Mathon, Metall. Mater. Trans. A 46 (2015) 1413–1418.CrossRefGoogle Scholar
  11. [11]
    M. Ratti, D. Leuvrey, M.H. Mathon, Y. de Carlan, J. Nucl. Mater. 386 (2009) 540–543.CrossRefGoogle Scholar
  12. [12]
    J.B. Seol, D. Haley, D.T. Hoelzer, J.H. Kim, Acta Mater. 153 (2018) 71–85.CrossRefGoogle Scholar
  13. [13]
    C. Capdevila, J. Chao, J.A. Jimenez, M.K. Miller, Mater. Sci. Tech. 29 (2013) 1179–1184.CrossRefGoogle Scholar
  14. [14]
    J. Isselin, R. Kasada, A. Kimura, Corros. Sci. 52 (2010) 3266–3270.CrossRefGoogle Scholar
  15. [15]
    A. Yabuuchi, M. Maekawa, A. Kawasuso, J. Nucl. Mater. 430 (2012) 190–193.CrossRefGoogle Scholar
  16. [16]
    J.H. Lee, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, J. Nucl. Mater. 417 (2011) 1225–1228.CrossRefGoogle Scholar
  17. [17]
    P. Dou, X. Zhang, A. Kimura, Y.H. He, C. Liu, Mater. Sci. 7 (2017) 413–422.Google Scholar
  18. [18]
    H.J. Xu, Z. Lu, D. Wang, C.M. Liu, Nucl. Eng. Technol. 49 (2017) 178–188.CrossRefGoogle Scholar
  19. [19]
    R. Gao, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, J. Nucl. Mater. 444 (2014) 462–468.CrossRefGoogle Scholar
  20. [20]
    B.V. Cockeram, Metall. Mater. Trans. A 33 (2002) 3685–3707.CrossRefGoogle Scholar
  21. [21]
    Y.B. Chun, S.H. Kang, D.W. Lee, S. Cho, Y.H. Jeong, A. Zywczak, C.K. Rhee, Fusion Eng. Des. 109–111 (2016) 629–633.CrossRefGoogle Scholar
  22. [22]
    L.N. Guo, C.C. Jia, B.F. Hu, H.Y. Li, Mater. Sci. Eng. A 527 (2010) 5220–5224.Google Scholar
  23. [23]
    J. Saito, T. Suda, S. Yamashita, S. Ohnuki, H. Takahashi, N. Akasaka, M. Nishida, S. Ukai, J. Nucl. Mater. 258–263 (1998) 1264–1271.CrossRefGoogle Scholar
  24. [24]
    Z.M. Shi, F.S. Han, Mater. Des. 66 (2015) 304–308.CrossRefGoogle Scholar
  25. [25]
    D.P. Zhan, G.X. Qiu, Z.H. Jiang, H.S. Zhang, Steel Res. Int. 88 (2017) 1700159.CrossRefGoogle Scholar
  26. [26]
    A. Karasev, H. Suito, Metall. Mater. Trans. B 30(1999) 259–270.CrossRefGoogle Scholar
  27. [27]
    M.A. Moghadasi, M.N. Ahmadabadi, F. Forghani, H.S. Kim, Sci. Rep. 6 (2016) 38621.CrossRefGoogle Scholar
  28. [28]
    C.H. Wu, L.F. Sun, C.B. Lai, Z.H. Deng, Q.X. Fu, C.Q. Yuan, Iron Steel Van Tit 37 (2016) 139–146.Google Scholar
  29. [29]
    G.X. Qiu, D.P. Zhan, C.S. Li, M. Qi, Z.H. Jiang, H.S. Zhang, Mater. Sci. Tech. 34 (2018) 2018–2029.CrossRefGoogle Scholar
  30. [30]
    W.P. Ye, Y.S. Lin, Ordn. Mater Sci. Eng. 152 (1988) No. 4, 35–41.Google Scholar
  31. [31]
    Q.X. Sun, Y. Zhou, Q.F. Fang, R. Gao, T. Zhang, X.P. Wang, J. Alloy. Compd. 598 (598) 243–247.Google Scholar
  32. [32]
    C.H. Lee, J.Y. Park, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Fusion Eng. Des. 124 (2017) 953–957.CrossRefGoogle Scholar
  33. [33]
    H. Tanigawa, K. Shiba, A. Möslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, J. Nucl. Mater. 417 (2011) 9–15.CrossRefGoogle Scholar
  34. [34]
    J.N. Yu, Q.Y. Huang, F.R. Wan, J. Nucl. Mater. 367–370 (2007) 97–101.CrossRefGoogle Scholar
  35. [35]
    P. Yan, J.X. Deng, Z. Wu, S.P. Li, Y.Q. Xing, J. Zhao, Int. J. Refract. Met. 35 (2012) 213–220.CrossRefGoogle Scholar
  36. [36]
    Y. Imai, T. Saito, Tetsu To Hagane 46 (1960) 1451–1458.CrossRefGoogle Scholar
  37. [37]
    G.X. Qiu, D.P Zhan, C.S. Li, M. Qi, Z.H. Jiang, H.S. Zhang, J. Mater. Eng. Perform. 28 (2019) 1067–1076.CrossRefGoogle Scholar
  38. [38]
    F. Zhao, K.B. Wan, F.R. Wan, Y. long, Y.L. Xu, Q.Y. Huang. Mater. Sci. Forum 475-479 (2005) 1383–1386.Google Scholar
  39. [39]
    Q.Y. Huang, Y.C. Wu, J.G. Li, F.R. Wan, J.L. Chen, G.N. Luo, X. Liu, J.M. Chen, Z.Y. Xu, X.G. Zhou, X. Ju, Y.Y. Shan, J.N. Yu, S.Y. Zhu, P.Y. Zhang, J.F. Yang, X.J. Chen, S.M. Dong, J. Nucl. Mater. 386–388 (2009) 400–404.CrossRefGoogle Scholar
  40. [40]
    L. Tan, Y. Yang, J.T. Busby, J. Nucl. Mater. 442 (2013) S13–S17.CrossRefGoogle Scholar
  41. [41]
    Q.M. Wan, R.S. Wang, G.G. Shu, Nucl. Eng. Des. 241 (2011) 459–463.CrossRefGoogle Scholar
  42. [42]
    S. Chen, L.J. Rong, J. Nucl. Mater. 459 (2015) 13–19.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Dong-ping Zhan
    • 1
  • Guo-xing Qiu
    • 1
    • 2
    Email author
  • Chang-sheng Li
    • 2
  • Min Qi
    • 2
  • Zhou-hua Jiang
    • 1
  • Hui-shu Zhang
    • 3
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  3. 3.School of Metallurgy EngineeringLiaoning Institute of Science and TechnologyBenxiChina

Personalised recommendations