Journal of Iron and Steel Research International

, Volume 26, Issue 11, pp 1171–1177 | Cite as

Fundamental mechanism of effects of MgO on sinter strength

  • Hong-song Han
  • Feng-man Shen
  • Xin JiangEmail author
  • Chuan-guang Bi
  • Hai-yan Zheng
  • Qiang-jian Gao
Original Paper


MgO-containing flux may have a series of effects on the quality of sinter and performances of the blast furnace. Thus, the fundamental mechanism of the effects of MgO on the sinter strength was investigated. Both the chemical reagent and industrial flux were used for preparing the specimens. The experimental results show that the sinter strength decreases with MgO addition. There are three reasons for it. The first reason is diffusion rate. Almost all of the CaO may react with Fe2O3 and generate CaO·Fe2O3, but most of MgO cannot react with Fe2O3, and it still remains in the state of original minerals. The diffusion rate of MgO in iron oxide is only 17.51 μm/min in 30 min. The second reason is the fluidity and ability to generate liquid phase. In the case of Fe2O3 mixed with CaO, there is some liquid phase formed above 1200 °C, while in the case of Fe2O3 mixed with MgO, even at 1200 and 1220 °C, there is still no liquid phase. The third reason is self-strength. In the case of industrial flux, the compression strength of the specimens made of Fe2O3 and limestone is 0.52 and 0.71 kN at 1150 and 1180 °C, respectively, while that of the specimens made of Fe2O3 and magnesite is 0.48 and 0.56 kN, respectively. Therefore, the fundamental mechanism of the effects of MgO additive on sinter strength can be better understood based on the diffusion rate of MgO in iron oxides, the fluidity of liquid phase, and the self-strength of bonding phase.


MgO addition Sinter strength Blast furnace Mineralization rate Fluidity Self-strength 



The authors wish to acknowledge the contributions of associates and colleagues at Northeastern University of China and Meishan Steel of China. Also, the financial supports of the National Natural Science Foundation of China (NSFC 51874080, 51774071, and 51604069) are appreciated very much.


  1. [1]
    C.B. Xu, D.Q. Cang, J. Iron Steel Res. Int. 17 (2010) No. 3, 1–7.CrossRefGoogle Scholar
  2. [2]
    X.J. Liu, S.M. Liao, Z.H. Rao, G. Liu, J. Iron Steel Res. Int. 25 (2018) 524–538.CrossRefGoogle Scholar
  3. [3]
    X.H. Fan, Y.N. Wang, M. Gan, Z.Y. Ji, Y. Zhou, X.L. Chen, J. Iron Steel Res. Int. 26 (2019) 558–566.CrossRefGoogle Scholar
  4. [4]
    F. Zhang, S.L. An, Y.C. Wang, G.P. Luo, X.L. Song, J. Iron Steel Res. Int. 22 (2015) 213–218.CrossRefGoogle Scholar
  5. [5]
    K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, T. Yamamoto, ISIJ Int. 48 (2008) 420–429.CrossRefGoogle Scholar
  6. [6]
    F.M. Shen, X. Jiang, G.S. Wu, G. Wei, X.G. Li, Y.S. Shen, ISIJ Int. 46 (2006) 65–69.CrossRefGoogle Scholar
  7. [7]
    M.K. Kalenga, A.M. Garbers-Craig, J. S. Afr. Inst. Min. Metall. 110 (2010) 447–456.Google Scholar
  8. [8]
    L.H. Hsieh, ISIJ Int. 45 (2005) 551–559.CrossRefGoogle Scholar
  9. [9]
    K. Higuchi, M. Naito, M. Nakano, Y. Takamoto, ISIJ Int. 44 (2004) 2057–2066.CrossRefGoogle Scholar
  10. [10]
    X. Jiang, L. Zhang, G.S. Li, M.F. Jin, Z. Wang, Y.S. Shen, F.M. Shen, J. Iron Steel Res. Int. 16 (2009) No. S2-1, 253–257.Google Scholar
  11. [11]
    U.S. Yadav, B.D. Pandey, B.K. Das, D.N. Jena, Ironmak. Steelmak. 29 (2002) 91–95.CrossRefGoogle Scholar
  12. [12]
    T. Paananen, Steel Res. Int. 78 (2007) 91–95.CrossRefGoogle Scholar
  13. [13]
    K. Higuchi, T. Tanaka, T. Sato, ISIJ Int. 47 (2007) 669–678.CrossRefGoogle Scholar
  14. [14]
    N. Taguchi, T. Otomo, Y. Omori, ISIJ Int. 30 (1990) 281–289.CrossRefGoogle Scholar
  15. [15]
    H. Tang, X. Fu, Y. Qin, T. Qi, J. S. Afr. Inst. Min. Metall. 117 (2017) 387–395.CrossRefGoogle Scholar
  16. [16]
    M. Nakano, M. Naito, K. Higuchi, K. Morimoto, ISIJ Int. 44 (2004) 2079–2085.CrossRefGoogle Scholar
  17. [17]
    M.S. Zhou, S.F. Han, L. Wang, X. Jiang, L.B. Xu, L.W. Zhai, J. Liu, H. Zhang, X.L. Qin, F.M. Shen, Steel Res. Int. 86 (2015) 1242–1251.CrossRefGoogle Scholar
  18. [18]
    T. Umadevi, A.K. Roy, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80 (2009) 800–807.Google Scholar
  19. [19]
    J. Fang, C. Li, X.J. Wang, R.X. Ren, Steel Res. Int. 79 (2008) 5–10.CrossRefGoogle Scholar
  20. [20]
    R.R. Wei, X.W. Lv, Z.W. Yue, S.L. Xiang, Metall. Mater. Trans. B 48 (2017) 733–742.CrossRefGoogle Scholar
  21. [21]
    B. Yu, X.W. Lv, S.L. Xiang, C.G. Bai, J.Q. Yin, ISIJ Int. 55 (2015) 1558–1564.CrossRefGoogle Scholar
  22. [22]
    G.P. Luo, S.L. Wu, G.J. Zhang, Y.C. Wang, J. Iron Steel Res. Int. 20 (2013) No. 3, 18–23.CrossRefGoogle Scholar
  23. [23]
    F.M. Shen, G.S. Li, Z.M. Ding, L. Mu, J. Iron Steel Res. Int. 16 (2009) No. 3, 1–5.CrossRefGoogle Scholar
  24. [24]
    S.L. Wu, G.L. Zhang, Steel Res. Int. 86 (2015) 1014–1021.CrossRefGoogle Scholar
  25. [25]
    X.B. Huang, K.Q. Fan, B.D. Sun, H.C. Lin, J.Y. Jia, J. Iron Steel Res. Int. 13 (2006) No. 2, 69–72.CrossRefGoogle Scholar
  26. [26]
    J. Muller, T.L. de Vries, B.A. Dippenaar, J.C. Vreugdenburg, J. S. Afr. Inst. Min. Metall. 115 (2015) 409–417.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Hong-song Han
    • 1
    • 2
  • Feng-man Shen
    • 1
  • Xin Jiang
    • 1
    Email author
  • Chuan-guang Bi
    • 2
  • Hai-yan Zheng
    • 1
  • Qiang-jian Gao
    • 1
  1. 1.School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Technology CenterMeishan Iron and Steel Limited CorporationNanjingChina

Personalised recommendations