Effect of drawing speed on microstructure distribution and drawability in twinning-induced plasticity steel during wire drawing

  • Joong-ki HwangEmail author
Original Paper


The effect of drawing speed on temperature rise and microstructure distribution in twinning-induced plasticity (TWIP) steel during wire drawing has been investigated to improve drawability for wire rod applications. Although wire drawing process is performed at room temperature, heat is generated due to the plastic deformation and friction at the wire–die interface. The steel wires subjected to the low drawing speed (LD) of 0.5 m/min and the high drawing speed (HD) of 5.0 m/min were analyzed using the numerical simulation and electron backscatter diffraction techniques. Interestingly, the specimens subjected to the HD had a higher drawability by about 18% compared to the LD, which is totally different from the general behavior of plain carbon pearlitic steels. The LD wire had uniform temperature distribution along the radial direction during wire drawing. In contrast, the HD wire had a temperature gradient along the radial direction due to the higher frictional effect at surface: the minimum temperature of 58 °C at center area and the maximum temperature of 143 °C at surface area. The higher stacking fault energy of HD wire at the surface area due to the high temperature rise retarded twinning rate, resulting in the prevention of fast exhaustion in ductility in comparison with the LD wires since the earlier depletion of twins at surface area is known as the main reason for the fracture of TWIP steel during wire drawing. Consequently, HD process delayed the fracture strain of wire and increased the uniformity of microstructure and mechanical properties along the radial direction.


Twinning-induced plasticity steel Wire drawing Deformation twin Drawing speed Temperature rise 



This research was supported by National Research Foundation of Korea (NRF-2018R1D1A1B07050103).


  1. [1]
    Y. Namimura, M. Fujita, N. Ibaraki, Y. Oki, Kobe Steel Eng. Rep. 54 (2004) 16–20.Google Scholar
  2. [2]
    J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, N.J. Kim, Mater. Sci. Eng. A 644 (2015) 41–52.CrossRefGoogle Scholar
  3. [3]
    Y.S. Chun, J. Lee, C.M. Bae, K.T. Prak, C.S. Lee, Scripta Mater. 67 (2012) 681–684.CrossRefGoogle Scholar
  4. [4]
    K.H. So, J.S. Kim, Y.S. Chun, K.T. Park, Y.K. Lee, C.S. Lee, ISIJ Int. 49 (2009) 1952–1959.CrossRefGoogle Scholar
  5. [5]
    O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141–168.CrossRefGoogle Scholar
  6. [6]
    O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.CrossRefGoogle Scholar
  7. [7]
    D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Mater. Sci. Eng. A 500 (2009) 196–206.CrossRefGoogle Scholar
  8. [8]
    Y.N. Dastur, W.C. Leslie, Metall. Trans. A 12 (1981) 749–759.CrossRefGoogle Scholar
  9. [9]
    O. Bouaziz, N. Guelton, Mater. Sci. Eng. A 319–321 (2001) 246–249.CrossRefGoogle Scholar
  10. [10]
    J.E. Jin, Y.K. Lee, Mater. Sci. Eng. A 527 (2009) 157–161.CrossRefGoogle Scholar
  11. [11]
    H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scripta Mater. 63 (2010) 961–964.CrossRefGoogle Scholar
  12. [12]
    E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 128 (2017) 120–134.CrossRefGoogle Scholar
  13. [13]
    B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283–362.CrossRefGoogle Scholar
  14. [14]
    O.A. Zambrano, J. Mater. Sci. 53 (2018) 14003–14062.CrossRefGoogle Scholar
  15. [15]
    J.K. Hwang, J. Mater. Sci. 54 (2019) 8743–8759.CrossRefGoogle Scholar
  16. [16]
    R.N. Wright, Wire technology: process engineering and metallurgy, Butterworth-Heinemann, Elsevier, USA, 2011.Google Scholar
  17. [17]
    S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hannien, Acta Mater. 59 (2011) 1068–1076.CrossRefGoogle Scholar
  18. [18]
    S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.CrossRefGoogle Scholar
  19. [19]
    A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40 (2009) 3076–3090.CrossRefGoogle Scholar
  20. [20]
    S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.CrossRefGoogle Scholar
  21. [21]
    J.K. Hwang, Mater. Sci. Eng. A 711 (2018) 156–164.CrossRefGoogle Scholar
  22. [22]
    T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, C.S. Lee, Mater. Lett. 75 (2012) 169–171.CrossRefGoogle Scholar
  23. [23]
    H.M. Baek, S.K. Hwang, H.S. Joo, Y.T. Im, I.H. Son, C.M. Bae, Mater. Des. 62 (2014) 137–148.CrossRefGoogle Scholar
  24. [24]
    U. Chakkingal, A.B. Suriadi, P.F. Thomson, Mater. Sci. Eng. A 266 (1999) 241–249.CrossRefGoogle Scholar
  25. [25]
    A.G. Atkins, R.M. Caddell, Int. J. Mech. Sci. 10 (1968) 15–28.CrossRefGoogle Scholar
  26. [26]
    R.K. Chin, P.S. Stelf, Int. J. Mach. Tools Manuf. 35 (1995) 1087–1098.CrossRefGoogle Scholar
  27. [27]
    M.T.P. Aguilar, E.C.S. Correa, R.F. Silva, P.R. Cetlin, J. Mater. Process. Technol. 125–126 (2002) 323–325.CrossRefGoogle Scholar
  28. [28]
    H.S. Lin, Y.C. Hsu, C.C. Keh, J. Mater. Process. Technol. 201 (2008) 128–132.CrossRefGoogle Scholar
  29. [29]
    J.K. Hwang, I.H. Son, J.Y. Yoo, A. Zargaran, N.J. Kim, Met. Mater. Int. 21 (2015) 815–822.CrossRefGoogle Scholar
  30. [30]
    H. Nagashima, K. Yoshida, J. AMME 70 (2015) 29–35.Google Scholar
  31. [31]
    J.K. Hwang, Mater. Sci. Eng. A 737 (2018) 188–197.CrossRefGoogle Scholar
  32. [32]
    A. Haddi, A. Imad, G. Vega, Mater. Des. 32 (2011) 4310–4315.CrossRefGoogle Scholar
  33. [33]
    A. El-Domiaty, S.Z. Kassab, J. Mater. Process. Technol. 83 (1998) 72–83.CrossRefGoogle Scholar
  34. [34]
    G. Vega, A. Haddi, A. Imad, Int. J. Mater. Form 2 (2009) 229–232.CrossRefGoogle Scholar
  35. [35]
    M. Suliga, R. Kruzel, T. Garstka, J. Gazdowicz, Metalurgija 54 (2015) 161–164.Google Scholar
  36. [36]
    J.W. Pilarczyk, J. Markowski, H. Dyja, B. Golis, Wire J. Int. 37 (2004) 118–123.Google Scholar
  37. [37]
    C.S. Cetinarslan, A. Guzey, Mater. Technol. 47 (2013) 245–252.Google Scholar
  38. [38]
    S.K. Lee, D.C. Ko, B.M. Kim, Mater. Des. 30 (2009) 2919–2927.CrossRefGoogle Scholar
  39. [39]
    I. Nemec, B. Golis, J.W. Pilarczyk, R. Budzik, W. Waszkielewicz, Wire J. Int. 40 (2007) 63–68.Google Scholar
  40. [40]
    A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483–484 (2008) 184–187.CrossRefGoogle Scholar
  41. [41]
    M. Ghasri-Khouzani, J.R. McDermid, Mater. Sci. Eng. A 621 (2015) 118–127.CrossRefGoogle Scholar
  42. [42]
    J.K. Hwang, Appl. Therm. Eng. 142 (2018) 311–320.CrossRefGoogle Scholar
  43. [43]
    J.E. Jin, Y.K. Lee, Acta Mater. 60 (2012) 1680–1688.CrossRefGoogle Scholar
  44. [44]
    S.K. Lee, S.B. Lee, B.M. Kim, J. Mater. Process. Technol. 210 (2010) 776–783.CrossRefGoogle Scholar
  45. [45]
    A.A. Saleh, E.V. Pereloma, A.A. Gazder, Mater. Sci. Eng. A 528 (2011) 4537–4549.CrossRefGoogle Scholar
  46. [46]
    O.A. Zambrano, J. Valdes, Y. Aguilar, J.J. Coronado, S.A. Rodriguez, R.E. Loge, Mater. Sci. Eng. A 689 (2017) 269–285.CrossRefGoogle Scholar
  47. [47]
    A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science, 2nd ed., Springer, Boston, USA, 2009.CrossRefGoogle Scholar
  48. [48]
    R. Badji, T. Chauveau, B. Bacroix, Mater. Sci. Eng. A 575 (2013) 94–103.CrossRefGoogle Scholar
  49. [49]
    J. Park, M. Kang, S.S. Sohn, S.H. Kim, K.S. Kim, N.J. Kim, S. Lee, Mater. Sci. Eng. A 684 (2017) 54–63.CrossRefGoogle Scholar
  50. [50]
    Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavemia, Y.T. Zhu, Z. Horita, T.G. Langdon, Scripta Mater. 60 (2009) 52–55.CrossRefGoogle Scholar
  51. [51]
    E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, H.J. Maier, Mater. Sci. Eng. A 604 (2014) 166–175.CrossRefGoogle Scholar
  52. [52]
    E. Bayraktar, F.A. Khalid, C. Levaillant, J. Mater. Process. Technol. 147 (2004) 145–154.CrossRefGoogle Scholar
  53. [53]
    H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan, Z.F. Zhang, Mater. Sci. Eng. A 607 (2014) 551–558.CrossRefGoogle Scholar
  54. [54]
    F.C. Liu, Z.N. Yang, C.L. Zheng, F.C. Zhang, Scripta Mater. 66 (2012) 431–434.CrossRefGoogle Scholar
  55. [55]
    Y.F. Shen, N. Jia, R.D.K. Misra, L. Zuo, Acta Mater. 103 (2016) 229–242.CrossRefGoogle Scholar
  56. [56]
    G.H. Hasani, R. Mahmudi, A. Karimi-Taheri, Int. J. Mater. Form 3 (2010) 59–64.CrossRefGoogle Scholar
  57. [57]
    C. Moon, N. Kim, J. Mech. Sci. Technol. 26 (2012) 2903–2911.CrossRefGoogle Scholar
  58. [58]
    R.W. Neu, Materials Performance and Characterization 2 (2013) 244–284.CrossRefGoogle Scholar
  59. [59]
    E. Felder, C. Levrau, M. Mantel, N.G. Truong Dinh, Wear 286–287 (2012) 27–34.CrossRefGoogle Scholar
  60. [60]
    K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K. Kim, N.J. Kim, Mater. Sci. Eng. A 528 (2011) 2922–2928.CrossRefGoogle Scholar
  61. [61]
    K. Renard, P.J. Jacques, Mater. Sci. Eng. A 542 (2012) 8–14.CrossRefGoogle Scholar
  62. [62]
    S.K. Lee, D.W. Kim, M.S. Jeong, B.M. Kim, Mater. Des. 34 (2012) 363–371.CrossRefGoogle Scholar
  63. [63]
    H.K. Yang, Y.Z. Tian, Z.J. Zhang, C.L. Yang, P. Zhang, Z.F. Zhang, Metall. Mater. Trans. A 48 (2017) 4458–4462.CrossRefGoogle Scholar
  64. [64]
    H.Y. Yu, S.M. Lee, J.H. Nam, S.J. Lee, D. Fabregue, M.H. Park, N. Tsuji, Y.K. Lee, Acta Mater. 131 (2017) 435–444.CrossRefGoogle Scholar
  65. [65]
    M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, K. Tsuzaki, Scripta Mater. 141 (2017) 20–23.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringTongmyong UniversityBusanRepublic of Korea

Personalised recommendations