Understanding microstructure-evolution-dependent fracture behaviors in pearlitic steels

  • Hu Chen
  • Chi ZhangEmail author
  • Hao Chen
  • Zhi-gang Yang
  • Lei ChenEmail author
Original Paper


Microstructure evolution or degradation has been well recognized to be closely related to the formation of microcracks in pearlitic rails and wheels. The rolling contact fatigue machine was employed to simulate the rail–wheel contact, and the microstructure evolution and crack formation of pearlitic steels subjected to rolling–sliding contact loading were then experimentally characterized. To further quantitatively predict the fracture behaviors, a phase-field model was herein established to investigate the cyclic loading-driven microstructure evolution and the microstructure-dependent fracture resistance in pearlite. The coupling of microstructure evolution and crack propagation was realized through the introduction of two-set order parameters, i.e., the crack field and the microstructure field, and the microstructure-dependent fracture toughness. The proposed model can predict the fracture resistance of microstructure at different depths from the contact surface, after different rolling cycles and with different initial pearlitic microstructures, which can shed light on the design of damage-resistant microstructure of pearlitic steels.


Pearlitic steel Rolling–sliding contact Microstructure evolution Crack propagation Phase-field model 



Chi Zhang acknowledges the financial support from the National Natural Science Foundation of China (Grant No. 51771097), the National Program on Key Basic Research Project (973 Program, Grant No. 2015CB654802), the National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB118001) and the Science Challenge Project (Grant No. TZ2018004). Lei Chen is grateful for the financial support by NSF under CBET-1604104.


  1. [1]
    R. Lewis, U. Olofsson, Wheel-rail interface handbook, Elsevier, 2009.CrossRefGoogle Scholar
  2. [2]
    G. Haidemenopoulos, A. Zervaki, P. Terezakis, J. Tzanis, A. Giannakopoulos, M. Kotouzas, Fatigue Fract. Eng. Mater. Struct. 29 (2006) 887–900.CrossRefGoogle Scholar
  3. [3]
    N. Larijani, J. Brouzoulis, M. Schilke, M. Ekh, Wear 314 (2014) 57–68.CrossRefGoogle Scholar
  4. [4]
    Q.H. Li, C. Zhang, H. Chen, H. Chen, Z.G. Yang, J. Iron Steel Res. Int. 23 (2016) 1054–1060.CrossRefGoogle Scholar
  5. [5]
    Y. Zhou, J.F. Peng, Z.P. Luo, B.B. Cao, X.S. Jin, M.H. Zhu, Wear 362–363 (2016) 8–17.CrossRefGoogle Scholar
  6. [6]
    C.P. Liu, X.J. Zhao, P.T. Liu, C. Xu, R.M. Ren, J. Iron Steel Res. Int. 25 (2018) 1278–1286.CrossRefGoogle Scholar
  7. [7]
    J. Garnham, C. Davis, Wear 271 (2011) 100–112.CrossRefGoogle Scholar
  8. [8]
    J.E. Garnham, C.L. Davis, Wear 265 (2008) 1363–1372.CrossRefGoogle Scholar
  9. [9]
    U. Olofsson, R. Nilsson, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 216 (2002) 249–264.CrossRefGoogle Scholar
  10. [10]
    R. Pan, X.J. Zhao, P.T. Liu, R.M. Ren, Wear 392–393 (2017) 213–220.CrossRefGoogle Scholar
  11. [11]
    S. Bogdański, M.W. Brown, Wear 253 (2002) 17–25.CrossRefGoogle Scholar
  12. [12]
    J. Brouzoulis, M. Ekh, Int. J. Fatigue 45 (2012) 98–105.CrossRefGoogle Scholar
  13. [13]
    G. Trummer, C. Marte, P. Dietmaier, C. Sommitsch, K. Six, Wear 352–353 (2016) 136–145.CrossRefGoogle Scholar
  14. [14]
    H.Z. Zhao, X.H. Liu, G.D. Wang, J. Iron Steel Res. Int. 13 (2006) No. 3, 68–73.CrossRefGoogle Scholar
  15. [15]
    L.Q. Chen, Annu. Rev. Mater. Res. 32 (2002) 113–140.CrossRefGoogle Scholar
  16. [16]
    C. Kuhn, R. Müller, Eng. Fract. Mech. 77 (2010) 3625–3634.CrossRefGoogle Scholar
  17. [17]
    C. Kuhn, A. Schlüter, R. Müller, Comp. Mater. Sci. 108 (2015) 374–384.CrossRefGoogle Scholar
  18. [18]
    H. Chen, C. Zhang, W.B. Liu, Q.H. Li, H. Chen, Z.G. Yang, Y.Q. Weng, Mater. Sci. Eng. A 655 (2016) 50–59.CrossRefGoogle Scholar
  19. [19]
    H. Chen, Y.Z. Ji, C. Zhang, W.B. Liu, H. Chen, Z.G. Yang, L.Q. Chen, L. Chen, Acta Mater. 141 (2017) 193–205.CrossRefGoogle Scholar
  20. [20]
    J.H. Beynon, J.E. Garnham, K.J. Sawley, Wear 192 (1996) 94–111.CrossRefGoogle Scholar
  21. [21]
    F.J. Franklin, I. Widiyarta, A. Kapoor, Wear 251 (2001) 949–955.CrossRefGoogle Scholar
  22. [22]
    H. Chen, C. Zhang, Q.H. Lu, H. Chen, Z.G. Yang, Y.H. Wen, S.Y. Hu, L. Chen, Comput. Methods Appl. Mech. Eng. 347 (2019) 1085–1104.CrossRefGoogle Scholar
  23. [23]
    D. Schneider, E. Schoof, Y. Huang, M. Selzer, B. Nestler, Comput. Methods Appl. Mech. Eng. 312 (2016) 186–195.CrossRefGoogle Scholar
  24. [24]
    Y.V. Milman, B. Galanov, S. Chugunova, Acta Metall. Mater. 41 (1993) 2523–2532.CrossRefGoogle Scholar
  25. [25]
    W. Lojkowski, Y. Millman, S. Chugunova, I. Goncharova, M. Djahanbakhsh, G. Bürkle, H.J. Fecht, Mater. Sci. Eng. A 303 (2001) 209–215.CrossRefGoogle Scholar
  26. [26]
    A. Hohenwarter, A. Taylor, R. Stock, R. Pippan, Metall. Mater. Trans. A 42 (2010) 1609–1618.CrossRefGoogle Scholar
  27. [27]
    J.W. Cahn, J.E. Hilliard, J. Chem. Phys. 28 (1958) 258–267.CrossRefGoogle Scholar
  28. [28]
    S.M. Allen, J.W. Cahn, Acta Metall. 27 (1979) 1085–1095.CrossRefGoogle Scholar
  29. [29]
    P. Murali, T.K. Bhandakkar, W.L. Cheah, M.H. Jhon, H. Gao, R. Ahluwalia, Phys. Rev. E 84 (2011) 015102.CrossRefGoogle Scholar
  30. [30]
    H. Yokoyama, S. Mitao, M. Takemasa, NKK Tech. Rep. 86 (2002) 59–64.Google Scholar
  31. [31]
    K. Mishra, A. Pachauri, A. Singh, Tribol. Lett. 66 (2018) 109.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Mechanical EngineeringMississippi State UniversityStarkvilleUSA

Personalised recommendations