Advertisement

Effect of H2 addition on process of primary slag formation in cohesive zone

  • Ya-na QieEmail author
  • Qing Lyu
  • Chen-chen Lan
  • Shu-hui Zhang
  • Ran Liu
Original Paper
  • 3 Downloads

Abstract

Based on the technology of gas-injection blast furnace (BF), the characteristics of primary slag formation with H2 addition were researched. The results indicate that, compared with traditional BF, the primary melt is formed at a lower temperature, which promotes the deformation of the solid burden particles. With the increase in temperature and H2 content, the quantity of formed melt containing FeO decreases sharply, corresponding to the crystallization of solid 2CaO·SiO2 during reduction. A wider softening range and narrower melting zone could be found in the gas-injection BF with a higher reduction potential. The permeability of burden layer is ameliorated as a result of decreased melt quantity. The influence of H2 on the high-temperature properties of burden is not so conspicuous when the H2 addition is from 10 to 15 vol.% against 5 to 10 vol.%. What is more, the slag shows a better liquidity with the decrease in basicity, owing to the transformation of melt composition from a primary phase field with high melting point to that with low melting point. The process of slag forming in gas-injection BF is characterized by earlier melt formation, less primary slag, higher melting temperature, better permeability and better liquidity, and the phase compositions of primary slag are close to those of final slag.

Keywords

Reduction degradation Primary slag formation Melt Hydrogen addition Gas-injection blast furnace 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (U1360205, 51674122) and Iron and Steel Research Foundation of Hebei (E2016209367).

References

  1. [1]
    K.D. Xu. Iron and Steel 45 (2010) No. 3, 1–12.Google Scholar
  2. [2]
    E.P. da Rocha, V.S. Guiherme, J.A. de Castro, Y. Sazaki, J.I. Yagi, J. Mater. Res. Technol. 2 (2013) 255–262.CrossRefGoogle Scholar
  3. [3]
    K.S. Abdel Halim, J. Iron Steel Res. Int. 20 (2013) No. 9, 40–46.CrossRefGoogle Scholar
  4. [4]
    M.S. Chu, H. Nogami, J.I. Yagi, ISIJ Int. 44 (2004) 801–808.CrossRefGoogle Scholar
  5. [5]
    J.M. Steer, R. Marsh, M. Greenslade, A. Robinson, Fuel 151 (2015) 40–49.CrossRefGoogle Scholar
  6. [6]
    S.W. Du, C.P. Yeh, W.H. Chen, C.H. Tsai, J.A. Lucas, Fuel 143 (2015) 98–106.CrossRefGoogle Scholar
  7. [7]
    C. Wang, M. Larsson, J. Lövgren, L. Nilsson, P. Mellin, W. Yang, H. Salman, A. Hultgren, Energy Procedia 61 (2014) 2184–2187.CrossRefGoogle Scholar
  8. [8]
    W.H. Chen, C.L. Hsu, S.W. Du, Energy 86 (2015) 758–771.CrossRefGoogle Scholar
  9. [9]
    G. Danloy, A. Berthelemot, M. Grant, J. Borlee, D. Sert, J. van der Stel, H. Jak, V. Dimastromatteo, M. Hallin, N. Eklund, N. Edberg, L. Sundqvist, B.E. Sköld, R. Lin, A. Feiterna, B. Korthas, F. Müller, C. Feilmayr, A. Habermann, Rev. Metall. 106 (2009) 1–8.CrossRefGoogle Scholar
  10. [10]
    R. Schott, Iron Steel Technology 10 (2013) No. 3, 63–75.Google Scholar
  11. [11]
    P. Jin, Z. Jiang, C. Bao, S. Hao, X. Zhang, Resources, Conservation and Recycling 117 (2017) 58–65.CrossRefGoogle Scholar
  12. [12]
    H.B. Luengen, M. Peters, P. Schmöle, Iron Steel Technology 9 (2012) 63–69.Google Scholar
  13. [13]
    Y.N. Qie, Q. Lyu, J.P. Li, C.C. Lan, X.J. Liu, ISIJ Int. 57 (2017) 404–412.CrossRefGoogle Scholar
  14. [14]
    Q. Lyu, Y.N. Qie, X.J. Liu, C.C. Lan, J.P. Li, S. Liu, Thermochim. Acta 648 (2017) 79–90.CrossRefGoogle Scholar
  15. [15]
    Q. Lü, F.M. Li, X.B. Li, L.F. Sun, Iron and Steel 43 (2008) No. 1, 17–21.Google Scholar
  16. [16]
    F.M. Li, Q. Lü, X.B. Li, Iron and Steel 42 (2007) No. 5, 12–15.Google Scholar
  17. [17]
    H. Guo, F.M. Li, Q. Lü, Journal of Hebei Institute of Technology 29 (2007) No. 1, 27–31.Google Scholar
  18. [18]
    I. Shigaki, S. Shirouchi, K. Tokutake, N. Hasegawa, ISIJ Int. 30 (1990) 199–207.CrossRefGoogle Scholar
  19. [19]
    P.A. Tanskanen, S.M. Huttunen, P.H. Mannila, J.J. Härkki, Ironmak. Steelmak. 29 (2002) 281–286.CrossRefGoogle Scholar
  20. [20]
    T. Nishimura, K. Higuchi, M. Naito, K. Kunitomo, ISIJ Int. 51 (2011) 1316–1321.CrossRefGoogle Scholar
  21. [21]
    M. Matsumura, M. Hoshi, T. Kawaguchi, ISIJ Int. 45 (2005) 594–602.CrossRefGoogle Scholar
  22. [22]
    X.W. An, J.S. Wang, R.Z. Lan, Y.H. Han, Q.G. Xue, J. Iron Steel Res. Int. 20 (2013) No. 5, 11–16.CrossRefGoogle Scholar
  23. [23]
    T. Bakker, Softening in the blast furnace process, Delft University of Technology, The Netherlands, 1999.Google Scholar
  24. [24]
    Y.N. Qie, Q. Lyu, X.J. Liu, J.P. Li, C.C. Lan, S.H. Zhang, C.J. Yan, Metall. Mater. Trans. B 49 (2018) 2622–2632.CrossRefGoogle Scholar
  25. [25]
    K. Higuchi, M. Naito, M. Nakano, Y. Takamoto, ISIJ Int. 44 (2004) 2057–2066.CrossRefGoogle Scholar
  26. [26]
    C.E. Loo, L.T. Matthews, D.P. O’dea, ISIJ Int. 51 (2011) 930–938.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Ya-na Qie
    • 1
    Email author
  • Qing Lyu
    • 1
  • Chen-chen Lan
    • 1
  • Shu-hui Zhang
    • 1
  • Ran Liu
    • 1
  1. 1.College of Metallurgy and Energy, Key Laboratory for Advanced Metallurgy TechnologyNorth China University of Science and TechnologyTangshanChina

Personalised recommendations