Journal of Iron and Steel Research International

, Volume 26, Issue 12, pp 1366–1375 | Cite as

Effects of solution treatment and cold rolling on structure and tensile properties of hot-rolled Ti–7.5Mo alloy

  • Yen-chun Chen
  • Chien-ping Ju
  • Jiin-huey Chern LinEmail author
Original Paper


The effects of solution treatment (ST) and cold rolling (CR) on structure and tensile properties of a heavily hot-rolled (HR) Ti–7.5Mo alloy were investigated. Experimental results indicated that, after HR with a one-pass 65% reduction in thickness, the pores in as-received samples substantially disappeared, the misorientation angle distribution became broader, and grain texture shifted toward \(\left\langle {10\bar{1}0} \right\rangle\). Post-HR ST produced an orthorhombic α″-phase with fine needle-type morphology and caused misorientation to narrow down to 55°–65° with substantially random texture; post-ST CR caused misorientation shift toward high-angle side and texture toward \(\left\langle {10\bar{1}0} \right\rangle\) and \(\left\langle {2\bar{1} \bar{1}0} \right\rangle\). With an increase in reduction in thickness, α′(102) intensity increased at the expense of two adjacent (112)/(022) α′′-peaks. All X-ray diffraction, metallography and electron backscattered diffraction on scanning electron microscope results indicated that pre-ST HR did not affect the formation of the desired low-modulus α′′-phase when the alloy was subsequently solution-treated. From a practical point of view, the most optimal tensile properties may be found in the sample solution-treated at 900 °C for 30 min and cold-rolled by a 20% reduction in thickness, which demonstrated a yield strength of 924 MPa, an ultimate tensile strength of 933 MPa, a tensile modulus of 73 GPa, and an elongation of 26%.


Titanium alloy Ti–Mo alloy Electron backscattered diffraction Microstructure Mechanical property 



The authors would like to acknowledge the support for this research by National Science Council of Taiwan, China under the Research Grant No. NSC 101-2622-E-006-030-CC2.


  1. [1]
    T. Suzuki, Y. Tokuda, H. Kobayashi, Internal Medicine 56 (2017) 2667–2669.CrossRefGoogle Scholar
  2. [2]
    R. Van Noort, J. Mater. Sci. 22 (1987) 3801–3811.CrossRefGoogle Scholar
  3. [3]
    R. Huiskes, H.H. Weinans, R. van Rietbergen, Clin. Orthop. Relat. Res. (1992) 124–134.Google Scholar
  4. [4]
    M. Niinomi, M. Nakai, Int. J. Biomater. 2011 (2011) 836587.CrossRefGoogle Scholar
  5. [5]
    M. Niinomi, Sci. Technol. Adv. Mater. 4 (2003) 445–454.CrossRefGoogle Scholar
  6. [6]
    M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog. Mater. Sci. 54 (2009) 397–425.CrossRefGoogle Scholar
  7. [7]
    C.N. Elias, J.H.C. Lima, R. Valiev, M.A. Meyers, JOM 60 (2008) 46–49.CrossRefGoogle Scholar
  8. [8]
    W. Bonfield, in: W. Hastings, P. Ducheyne (Eds.), Natural and Living Biomaterials, CRC Press, Florida, USA, 2018, pp. 43–60.CrossRefGoogle Scholar
  9. [9]
    S. Rao, T. Ushida, T. Tateishi, Y. Okazaki, S. Asao, Bio-Med. Mater. Eng. 6 (1996) 79–86.Google Scholar
  10. [10]
    S. Catalani, S. Stea, A. Beraudi, M.E. Gilberti, B. Bordini, A. Toni, P. Apostoli, Clin. Toxicol. 51 (2013) 550–556.CrossRefGoogle Scholar
  11. [11]
    J.R. Walton, J. Alzheimer's Disease 40 (2014) 765–838.CrossRefGoogle Scholar
  12. [12]
    K. Wang, Mater. Sci. Eng. A 213 (1996) 134–137.CrossRefGoogle Scholar
  13. [13]
    W.F. Ho, C.P. Ju, J.H.C. Lin, Biomaterials 20 (1999) 2115–2122.CrossRefGoogle Scholar
  14. [14]
    Y.C. Chen, C.P. Ju, J.H.C. Lin, Micron 65 (2014) 34–44.CrossRefGoogle Scholar
  15. [15]
    E.A. Metzbower, D.W. Moon, F.W. Fraser, in: S.A. David, G.M. Slaughter (Eds.), International Conference on Welding Technology for Energy Applications, American Welding Society, Gatlinburg, USA, 1982, pp. 313–330.Google Scholar
  16. [16]
    I.A. Bagariatskii, G.I. Nosova, T.V. Tagunova, Soviet Phys. Dokl. 3 (1958) 1014–1018.Google Scholar
  17. [17]
    L. Wang, W. Lu, J. Qin, F. Zhang, D. Zhang, Mater. Sci. Eng. A 490 (2008) 421–426.CrossRefGoogle Scholar
  18. [18]
    S.R. Lampman, ASM Handbook: Volume 19, Fatigue and Fracture, ASM International, USA, 1996.Google Scholar
  19. [19]
    Y.Q. Ma, W.J. Jin, S.Y. Yang, J.B. Zhang, Y.X. Huang, X.J. Liu, Mater. Sci. Forum 610 (2009) 1382–1386.CrossRefGoogle Scholar
  20. [20]
    M. Wroski, K. Wierzbanowski, M. Wróbel, S. Wroski, B. Bacroix, Met. Mater. Int. 21 (2015) 805–814.CrossRefGoogle Scholar
  21. [21]
    R.Z. Valiev, A.V. Sergueeva, A.K. Mukherjee, Scripta Mater. 49 (2003) 669–674.CrossRefGoogle Scholar
  22. [22]
    J.C. Williams, B.S. Hickman, H.L. Marcus, Metall. Mater. Trans. B 2 (1971) 1913–1919.CrossRefGoogle Scholar
  23. [23]
    Y.B. Chun, S.H. Yu, S.L. Semiatin, S.K. Hwang, Mater. Sci. Eng. A 398 (2005) 209–219.CrossRefGoogle Scholar
  24. [24]
    S.F. Ahmad, H. Kiefte, M.J. Clouter, M.D. Whitmore, Phys. Rev. B 26 (1982) 4239–4261.CrossRefGoogle Scholar
  25. [25]
    V.D. Cojocaru, D. Raducanu, T. Gloriant, D.M. Gordin, I. Cinca, Mater. Sci. Eng. A 586 (2013) 1–10.CrossRefGoogle Scholar
  26. [26]
    S. Dai, Y. Wang, F. Chen, X. Yu, Y. Zhang, Mater. Sci. Eng. A 575 (2013) 35–40.CrossRefGoogle Scholar
  27. [27]
    D. Qin, Y. Lu, Q. Liu, L. Zheng, L. Zhou, Mater. Sci. Eng. A 572 (2013) 19–24.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Yen-chun Chen
    • 1
  • Chien-ping Ju
    • 1
  • Jiin-huey Chern Lin
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringCheng-Kung UniversityTaiwan 70101China

Personalised recommendations