Advertisement

Influence of carbon content on microstructure and mechanical properties of 1000 MPa deposited metal by gas metal arc welding

  • Tong-bang AnEmail author
  • Jin-shan Wei
  • Lin Zhao
  • Ji-guo Shan
  • Zhi-ling Tian
Original Paper
  • 21 Downloads

Abstract

The effects of carbon content (0.078–0.100 wt.%) on the microstructure and properties of 1000 MPa grade deposited metal produced by gas metal arc welding have been investigated. Experimental results show that the microstructure of the deposited metal was mainly composed of martensite, bainite and retained austenite. With increasing carbon content, the proportion of martensite increased, and the amount of bainite was reduced. High carbon content is beneficial to strength, but harmful to impact toughness, and thus, carbon reductions lead to the increase in impact toughness. When the carbon content was 0.100 wt.%, the lowest Charpy absorbed energy of 47 J at − 40 °C for the deposited metal was achieved, the highest yield strength of 1038 MPa was attained, and the yield-to-tensile ratio was more than 0.88, while the highest Charpy absorbed energy of 55.7 J at − 40 °C and the lowest yield strength of 915 MPa were obtained when the deposited metal contains 0.078 wt.% C, and the yield-to-tensile ratio was less than 0.85. It is concluded that bainite fraction and fine effective grain size were the dominant factors to achieve good comprehensive mechanical properties (the required strength and an acceptable toughness) of deposited metals with various carbon contents.

Keywords

1000 MPa grade deposited metal Carbon content Microstructure Strength Gas metal arc welding Impact toughness 

Notes

Acknowledgements

This work was supported by National Key R&D Plan of China (2017YFB0305100 and 2017YFB0305105).

References

  1. [1]
    E.A. Gyasi, P. Kah, H. Wu, M.A. Kesse, Int. J. Adv. Manuf. Technol. 93 (2017) 1139–1155.CrossRefGoogle Scholar
  2. [2]
    J.S. Seo, C.H. Lee, H.J. Kim, ISIJ Int. 53 (2013) 279–285.CrossRefGoogle Scholar
  3. [3]
    Y. Kang, S. Jeong, J.H. Kang, C. Lee, Metall. Mater. Trans. A 47 (2016) 2842–2854.CrossRefGoogle Scholar
  4. [4]
    E. Keehan, J. Zachrisson, L. Karlsson, Sci. Technol. Weld. Join. 15 (2010) 233–238.CrossRefGoogle Scholar
  5. [5]
    W.S. Du, Y. Peng, H.J. Xiao, C.H. He, Z.L. Tian, Mater. Sci. Forum 638–642 (2010) 3441–3446.CrossRefGoogle Scholar
  6. [6]
    T.L. Zhang, Z.X. Li, S.M. Ma, S. Kou, H.Y. Jing, Sci. Technol. Weld. Join. 21 (2016) 186–193.CrossRefGoogle Scholar
  7. [7]
    P. Haslberger, S. Holly, W. Ernst, R. Schnitzer, J. Mater. Sci. 53 (2018) 6968–6979.CrossRefGoogle Scholar
  8. [8]
    M. Gouda, M. Takahashi, K. Ikeuchi, Sci. Technol. Weld. Join. 10 (2005) 369–377.CrossRefGoogle Scholar
  9. [9]
    Z. Yang, T. Debroy, Metall. Mater. Trans. A 30 (1999) 483–493.CrossRefGoogle Scholar
  10. [10]
    J.E. Ramirez, S. Liu, D.L. Olson, Mater. Sci. Eng. A 216 (1996) 91–103.CrossRefGoogle Scholar
  11. [11]
    D.A. Fleming, A.Q. Bracarense, S. Liu, D.L. Olson, Weld. J. 75 (1996) 171–183.Google Scholar
  12. [12]
    N.A. Fleck, O. Grong, G.R. Edwards, D.K. Matlock, Weld. J. 65 (1986) 113–121.Google Scholar
  13. [13]
    P. Haslberger, W. Ernst, R. Schnitzer, Sci. Technol. Weld. Join. 22 (2017) 336–342.CrossRefGoogle Scholar
  14. [14]
    K. Sampath, R.S. Green, D.A. Civis, B.E. Williams, P.J. Konkol, Weld. J. 74 (1995) 69–76.Google Scholar
  15. [15]
    Y. Peng, X.N. Peng, X.M. Zhang, Z.L. Tian, T. Wang, J. Iron Steel Res. Int. 21 (2014) 539–544.CrossRefGoogle Scholar
  16. [16]
    M. Lord, Design and modelling of ultra-high strength steel weld deposits, University of Cambridge, London, UK, 1999.Google Scholar
  17. [17]
    E. Keehan, L. Karlsson, H.O. Andrén, H.K.D.H. Bhadeshia, Sci. Technol. Weld. Join. 11 (2006) 19–24.CrossRefGoogle Scholar
  18. [18]
    E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, F. Delannay, Mater. Charact. 40 (1998) 111–118.CrossRefGoogle Scholar
  19. [19]
    L.C. Chang, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 11 (1995) 874–882.CrossRefGoogle Scholar
  20. [20]
    V. Biss, R.L. Cryderman, Metall. Mater. Trans. B 2 (1971) 2267–2276.CrossRefGoogle Scholar
  21. [21]
    C.H. Young, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 10 (1994) 209–214.CrossRefGoogle Scholar
  22. [22]
    C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, J. Mater. Sci. Technol. 23(2007) 659–664.Google Scholar
  23. [23]
    Y. Tomita, K. Okabayashi, Metall. Trans. A 17 (1986) 1203–1209.CrossRefGoogle Scholar
  24. [24]
    C.F. Wang, M.Q. Wang, J. Shi, W.J. Hui, H. Dong, Scripta Mater. 58 (2008) 492–495.CrossRefGoogle Scholar
  25. [25]
    J.W. Morris, C. Kinney, K. Pytlewski, Y. Adachi, Sci. Technol. Adv. Mater. 14 (2013) 14208.CrossRefGoogle Scholar
  26. [26]
    Q. Wu, M.A. Zikry, Int. J. Solids Struct. 51 (2014) 4345–4356.CrossRefGoogle Scholar
  27. [27]
    S. Morito, H. Yoshida, T. Maki, X. Huang, Mater. Sci. Eng. A 438 (2006) 237–240.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Tong-bang An
    • 1
    • 2
    Email author
  • Jin-shan Wei
    • 1
  • Lin Zhao
    • 1
  • Ji-guo Shan
    • 2
  • Zhi-ling Tian
    • 1
  1. 1.Central Iron & Steel Research InstituteBeijingChina
  2. 2.Department of Mechanical EngineeringTsinghua UniversityBeijingChina

Personalised recommendations