Numerical simulation on characteristics of COREX shaft furnace with central gas distribution

  • Xing-sheng Zhang
  • Zong-shu ZouEmail author
  • Zhi-guo Luo
Original Paper


A three-dimensional steady-state mathematical model, considering the chemical reactions and transfers of momentum, heat and mass between the gas and solid phases, was developed to investigate the characteristics of the shaft furnace with the central gas distribution (CGD) device. The model was verified by the practical production data of a COREX-3000 shaft furnace, and then, it was used to study the inner characteristics of the shaft furnace with CGD. The results show that, compared with the COREX shaft furnace without CGD, the gas utilization rate (UR) and solid metallization rate (MR) increase from 33.66% to 34.18% and 60.4% to 61.8%, respectively. Especially, the standard deviation of solid MR decreases from 6.9% to 0.8%, which means that the MR of direct reduced iron from the furnace with CGD is more uniform than that without CGD. Additionally, the effects of operational conditions and CGD design on gas UR, solid MR and direct reduced iron uniformity were further discussed and the optimized conditions were suggested.


COREX shaft furnace Central gas distribution Gas utilization Solid metallization Direct reduced iron uniformity 

List of symbols


Specific heat capacity of gas phase (J kg−1 K−1)


Specific heat capacity of solid phase (J kg−1 K−1)


Mass diffusion coefficient of species i (m2 s−1)


Particle diameter of solid phase (m)


Coefficient of convective heat transfer (W m−2 K−1)


Drag force between gas and solid phases (N m−2)


Gravitational acceleration (m s−2)


Enthalpy of phase p (J kg−1)

\(\Delta H_{n}^{T}\)

Enthalpy of reaction n at temperature T (J kg−1)


Equilibrium constant of reaction n


Thermal conductivity of gas phase (W m−1 K−1)


Thermal conductivity of solid phase (W m−1 K−1)


Rate constant of reaction n


Molecular mass of species i (kg kmol−1)


Average molecular mass of gas phase (kg kmol−1)


Pressure (Pa)


Prandtl number


Chemical reaction rate of reaction n (kmol m−3 s−1)


Relative Reynolds number based on solid particle diameter

\(S_{\phi }\)

Source term of general dependent variable \(\phi\)

\(T_{\text g}\)

Temperature of gas phase (K)

\(T_{\text s}\)

Temperature of solid phase (K)


Velocity of phase p (m s−1)


Mass fraction of species i in phase p


Mole fraction of species i


Mole fraction of species i under equilibrium of reaction m


Volume fraction of phase p


Density of phase p (kg m−3)

\(\varGamma_{\phi }\)

Diffusion coefficient of variable \(\phi\) (kg m−1 s−1)

\(\overline{\overline{\tau }}_{p}\)

Stress tensor of phase p (Pa)


Identity tensor


Viscosity of phase p (Pa s)


Gas composition in volume fraction



The authors would like to thank the National Key Technology R&D Program during the “12th Five-year Plan” of China (Grant No. 2011BAE04B02) and the National Natural Science Foundation of China (Grant No. 51574064) for their financial support.


  1. [1]
    B. Anameric, S.K. Kavatra, Miner. Process. Extr. Metall. Rev. 30 (2008) 1–50.CrossRefGoogle Scholar
  2. [2]
    Y.X. Qu, Y.X. Yang Z.S. Zou, C. Zeilstra, K. Meijer, R. Boom, ISIJ Int. 54 (2014) 2196–2205.CrossRefGoogle Scholar
  3. [3]
    X.L. Liu, G. Pan, G. Wang, Z. Wen, Energ. Fuel. 25 (2011) 5729–5735.CrossRefGoogle Scholar
  4. [4]
    E. Ottenschlaeger, W. Kepplinger, G. Papst, R. Hauk, MPT 9 (1986) 24–30.Google Scholar
  5. [5]
    A. Eberle, E. Eichberger, C. Bohm, G. Leonard, H. Wetzling, Iron Steel Eng. 75 (1998) 25–28.Google Scholar
  6. [6]
    A. Eberle, D. Siuka, C. Bohm, Stahl Eisen. 126 (2006) 31–40.Google Scholar
  7. [7]
    I.F. Kurunov, Metallurgist 54 (2010) 335–342.CrossRefGoogle Scholar
  8. [8]
    H.M.W. Delport, Ironmak. Steelmak. 19 (1992) 183–189.Google Scholar
  9. [9]
    P.P. Kumar, L.M. Garg, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 29–33.CrossRefGoogle Scholar
  10. [10]
    P.P. Kumar, D. Gupta, T.K. Naha, S.S. Gupta, Ironmak. Steelmak. 33 (2006) 293–298.CrossRefGoogle Scholar
  11. [11]
    P.P. Kumar, P.K. Gupta, M. Ranjan, Ironmak. Steelmak. 35 (2008) 260–263.CrossRefGoogle Scholar
  12. [12]
    W.G. Li, in: The 3rd Baosteel Biennial Acad. Conf., SSTLPH, Shanghai, China, 2008, pp. A75–83.Google Scholar
  13. [13]
    Q. Zhang, L. Guo, in: The 3rd Baosteel Biennial Acad. Conf., SSTLPH, Shanghai, China, 2008, pp. A219–223.Google Scholar
  14. [14]
    J.J. Lin, W.G. Song, W.Y. Xia, in: 5th Baosteel Biennial Acad. Conf., SSTLPH, Shanghai, China, 2013, pp. A499–506.Google Scholar
  15. [15]
    Y.J. Lee, Powder Technol. 102 (1999) No.2, 194-201.CrossRefGoogle Scholar
  16. [16]
    H. Zhou, Z.S. Zou, Z.G. Luo, T. Zhang, H.F. Li, Ironmak. Steelmak. 42 (2015) 209–216.CrossRefGoogle Scholar
  17. [17]
    S.L. Wu, J. Xu. Q. Zhou, S.D. Yang, L.H. Zhang, J. Iron Steel Res. Int. 16 (2009) 1250–1253.Google Scholar
  18. [18]
    H. Zhou, Z.G. Luo, T. Zhang, J.J. Sun, Z.S. Zou, Adv. Mater. Res. 712 (2013) 1268–1273.CrossRefGoogle Scholar
  19. [19]
    Q. Li, M.X. Feng, Z.S. Zou, ISIJ Int. 53 (2013) 1365–1371.CrossRefGoogle Scholar
  20. [20]
    M.Y. Kou, S.L. Wu, G. Wang, B.J. Zhao, C.Q. Cai, Steel Res. Int. 86 (2015) 686–694.CrossRefGoogle Scholar
  21. [21]
    H. Zhou, Z.G. Luo, T. Zhang, Y. You, Z.S. Zou, Y.S. Shen, ISIJ Int. 56 (2016) 245–254.CrossRefGoogle Scholar
  22. [22]
    Z.L. Qiu, Z.G. Luo, H. Zhou, R. Chen, F. Wang, Z.S. Zou, J. Iron Steel Res. Int. 24 (2017) 18–26.CrossRefGoogle Scholar
  23. [23]
    J. Xu, S.L. Wu, X.Y. Guo, M.Y. Kou, J. Shanghai Jiaotong Univ. (Sci.) 16 (2011) 375–379.CrossRefGoogle Scholar
  24. [24]
    J. Xu, S.L. Wu, M.Y. Kou, K.P. Du, ISIJ Int. 53 (2013) 576–582.CrossRefGoogle Scholar
  25. [25]
    M.Y. Kou, S.L. Wu, K.P. Du, W. Shen, X.D. Ma, M. Chen, B.J. Zhao, JOM 67 (2015) 459–466.CrossRefGoogle Scholar
  26. [26]
    S.L. Wu, K.P. Du, J. Xu, W. Shen, M.Y. Kou, Z.K. Zhang, JOM 66 (2014) 1265–1276.CrossRefGoogle Scholar
  27. [27]
    J.D. Anderson, Computational fluid dynamic, McGraw-Hill, New York, USA, 1995.Google Scholar
  28. [28]
    X.F. Dong, A.B. Yu, J. Yagi, P. Zulli, ISIJ Int. 47 (2007) 1533–1570.CrossRefGoogle Scholar
  29. [29]
    S. Ergun, Chem. Eng. Prog. 48 (1952) 89–94.Google Scholar
  30. [30]
    J. Yagi, ISIJ Int. 33 (1993) 619–639.CrossRefGoogle Scholar
  31. [31]
    W.E. Ranz, W.R. Marshall, Chem. Eng. Prog. 48 (1952) 141–173.Google Scholar
  32. [32]
    R.H. Perry, D.W. Green, J.O. Maloney, Perry’s chemical engineer’s handbook, 7th ed., McGraw-Hill, New York, USA, 1997.Google Scholar
  33. [33]
    Y. Hara, M. Sakawa, S. Kondo, Testu-to-Hagané 62 (1976) 324–333.CrossRefGoogle Scholar
  34. [34]
    P.R. Austin, H. Nogami, J. Yagi, ISIJ Int. 37 (1997) 748–755.CrossRefGoogle Scholar
  35. [35]
    R. Takahashi, Y. Takahashi, J. Yagi, Y. Omori, in: Proc. of the 43rd Ironmaking Conf., Iron & Steel Soc. of AIME, Warrendale, PA, USA, 1984, pp. 485–500.Google Scholar
  36. [36]
    R. Takahashi, Y. Takahashi, J. Yagi, Y. Omori, Trans. Iron Steel Inst. Jpn. 26 (1986) 765–774.CrossRefGoogle Scholar
  37. [37]
    S.L. Wu, J. Xu, S.D. Yang, Q. Zhou, L.H. Zhang, ISIJ Int. 50 (2010) 1032–1039.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Xing-sheng Zhang
    • 1
    • 2
  • Zong-shu Zou
    • 1
    • 2
    Email author
  • Zhi-guo Luo
    • 1
    • 2
  1. 1.Department of Ferrous Metallurgy, School of MetallurgyNortheastern UniversityShenyangChina
  2. 2.Key Laboratory of Ecological Utilization of Multi-metallic Mineral of Education MinistryNortheastern UniversityShenyangChina

Personalised recommendations