Advertisement

Effects of Al addition on bainite transformation and properties of high-strength carbide-free bainitic steels

  • Jun-yu Tian
  • Guang XuEmail author
  • Ming-xing Zhou
  • Hai-jiang Hu
  • Zheng-liang Xue
Original Paper
  • 22 Downloads

Abstract

The effects of aluminum addition on bainite transformation and properties of carbide-free bainitic steels containing 0.22 wt.% carbon were investigated by two different types of heat treatment processes: continuous cooling process (CCP) and isothermal transformation process (ITP). The results indicate that for the CCP treatment, Al addition significantly promoted the ferrite and bainite transformation; however, it did not significantly increase the product of tensile strength and total elongation (PSE). For the ITP treatment, Al addition significantly promoted the kinetics of bainite transformation, and thus, more bainite was formed with Al addition; however, it was found that Al addition resulted in a decrease in tensile strength and an increase in elongation of the tested bainitic steels. Moreover, the effects of Al addition on comprehensive property were profoundly dependent on austempering temperatures. When the austempering temperature was higher (430 °C), PSE significantly increased with Al addition, whereas it decreased at the lower austempering temperature (400 °C). Therefore, it can be concluded that the effects of Al on properties of bainitic steels were more significant at higher austempering temperatures.

Keywords

Aluminum Bainite transformation Continuous cooling Isothermal transformation Mechanical property 

Notes

Acknowledgements

The authors gratefully acknowledge the financial supports from National Natural Science Foundation of China (Nos. 51274154 and 51704217), Major Projects of Technological Innovation in Hubei (No. 2017AAA116), the Special Fund of Wuhan University of Science and Technology for Master Students’ Short-Term Studying Abroad, and the State Scholarship Fund of China Scholarship Council.

References

  1. [1]
    Y.W. Wang, C. Feng, F.Y Xu, B.Z. Bai, H.S. Fang, J. Iron Steel Res. Int. 17 (2010) No. 1, 49–53.CrossRefGoogle Scholar
  2. [2]
    X.M. Wang, X.L. He, ISIJ Int. 42 (2002) 38–46.CrossRefGoogle Scholar
  3. [3]
    S.C. Wang, P.W. Kao, J. Mater. Sci. 28 (1993) 5169–5175.CrossRefGoogle Scholar
  4. [4]
    L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, Y. Tian, Mater. Des. 39 (2012) 264–268.CrossRefGoogle Scholar
  5. [5]
    T. Heller, A. Nuss, Ironmak. Steelmak. 32 (2005) 303–308.CrossRefGoogle Scholar
  6. [6]
    H.J. Hu, G. Xu, L. Wang, Z.L. Xue, Y.L. Zhang, G.H. Liu, Mater. Des. 84 (2015) 95–99.CrossRefGoogle Scholar
  7. [7]
    C. Feng, H.S. Fang, Y.K. Zheng, B.Z. Bai, J. Iron Steel Res. Int. 17 (2010) No. 4, 53–58.CrossRefGoogle Scholar
  8. [8]
    J.Y. Tian, G. Xu, Z.Y. Jiang, H.J. Hu, M.X. Zhou, Met. Mater. Int. 24 (2018) 1202–1212.CrossRefGoogle Scholar
  9. [9]
    F. Hu, K.M. Wu, H. Zheng, Steel Res. Int. 84 (2013) 1060–1065.Google Scholar
  10. [10]
    F. Hu, K.M. Wu, H. Zheng, Ironmak. Steelmak. 39 (2012) 535–539.CrossRefGoogle Scholar
  11. [11]
    J. Zhao, T.S. Wang, B. Lv, F.C. Zhang, Mater. Sci. Eng. A 628 (2015) 327–331.CrossRefGoogle Scholar
  12. [12]
    F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.CrossRefGoogle Scholar
  13. [13]
    C. Garcia-Mateo, F.G. Caballero, H.K.D.H. Bhadeshia, ISIJ Int. 43 (2003) 285–288.Google Scholar
  14. [14]
    A. Mertens, P.J. Jacques, L. Zhao, S.O. Kruijver, J. Sietsma, F. Delannay, J. Phys. IV France 112 (2003) 305–308.CrossRefGoogle Scholar
  15. [15]
    A. Mertens, P.J. Jacques, J. Sietsma, F. Delannay, Steel Res. Int. 79 (2008) 954–959.CrossRefGoogle Scholar
  16. [16]
    E. Jimenez-Melero, N.H.V. Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, Acta Mater. 57 (2009) 533–543.CrossRefGoogle Scholar
  17. [17]
    C. Garcia-Mateo, F.G. Caballero, Mater. Trans. 46 (2005) 1839–1846.CrossRefGoogle Scholar
  18. [18]
    H.K.D.H. Bhadeshia, Bainite in Steels, second ed., IOM Communications Ltd., London, UK, 2001.Google Scholar
  19. [19]
    L. LI, B.C. Decoomant, P. Wollants, Y.L. He, X.D. Zhou, J. Mater. Sci. Technol. 20 (2004) 135–138.Google Scholar
  20. [20]
    Y. Guo, K. Feng, F. Lu, K. Zhang, Z. Li, S.R.E. Hosseini, M. Wang, Appl. Surf. Sci. 357 (2015) 309–316.CrossRefGoogle Scholar
  21. [21]
    H. Jirková, L. Kučerová, B. Mašek, Mater. Today 2 (2015) 627–630.Google Scholar
  22. [22]
    Y.L. Chen, C.Z. Dong, Q.W. Cai, D.C. Wan, L. Li, Y. Qi, J. Mater. Eng. 41 (2013) No. 9, 16–21.Google Scholar
  23. [23]
    J. Yu, C.J. Mcmahon, Metall. Mater. Trans. A 11 (1980) 277–289.CrossRefGoogle Scholar
  24. [24]
    K.W. Andrews, J. Iron Steel Inst. 203 (1965) 721–727.Google Scholar
  25. [25]
    H.J. Hu, G. Xu, L. Wang, M.X. Zhou, Z.L. Xue, Met. Mater. Int. 21 (2015) 929–935.CrossRefGoogle Scholar
  26. [26]
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, Steel Res. Int. (2018-01-30).  https://doi.org/10.1002/srin.201700469 Google Scholar
  27. [27]
    C.Y. Wang, J. Shi, W.Q. Cao, H. Dong, Mater. Sci. Eng. A 527 (2010) 3442–3449.CrossRefGoogle Scholar
  28. [28]
    M.X. Zhou, G. Xu, L. Wang, B. He, Trans. Indian Inst. Met. 70 (2017) 1447–1453.CrossRefGoogle Scholar
  29. [29]
    A. Monsalve, A. Guzmán, F.D. Barbieri, A. Artigas, L. Carvajal, O. Bustos, Metall. Mater. Trans. A 47 (2016) 3088–3094.CrossRefGoogle Scholar
  30. [30]
    E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, J.V. Humbeeck, Scripta Mater. 44 (2001) 885–892.CrossRefGoogle Scholar
  31. [31]
    R.K. Dutta, M. Amirthalingam, M.J.M. Hermans, I.M. Richardson, Mater. Sci. Eng. A 559 (2013) 86–95.CrossRefGoogle Scholar
  32. [32]
    J.Y. Tian, G. Xu, M.X. Zhou, H.J. Hu, X.L. Wan, Metals 7 (2017) 40–50.CrossRefGoogle Scholar
  33. [33]
    S. Baradari, M.A. Boutorabi, Mater. Des. 86 (2015) 603–609.CrossRefGoogle Scholar
  34. [34]
    F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, C.G.D. Andrés, Mater. Des. 30 (2009) 2077–2083.CrossRefGoogle Scholar
  35. [35]
    H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, R.W. Reed, Mater. Sci. Technol. 7 (1991) 686–698.CrossRefGoogle Scholar
  36. [36]
    H.K.D.H. Bhadeshia, Mater. Sci. Forum 500 (2005) 63–74.CrossRefGoogle Scholar
  37. [37]
    Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, R.D.K. Misra, Mater. Sci. Eng. A 583 (2013) 1–10.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Jun-yu Tian
    • 1
  • Guang Xu
    • 1
    Email author
  • Ming-xing Zhou
    • 1
  • Hai-jiang Hu
    • 1
  • Zheng-liang Xue
    • 1
  1. 1.The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced SteelsWuhan University of Science and TechnologyWuhanChina

Personalised recommendations