Advertisement

Deformation mechanism analysis of roll forming for Q&P980 steel based on finite element simulation

  • Fei HanEmail author
  • Yun Wang
  • Li-li Niu
Original Paper
  • 6 Downloads

Abstract

Roll forming is a sheet metal forming process, which can form the profiles gradually to improve the formability of Q&P980 steel. The plastic deformation mechanism of roll forming was expounded by analysing the stress and strain distribution at the corner of a hat-type profile when the Q&P980 steel sheet passed through a series of continuous stands. And the plastic deformation mainly accumulated when the sheet metal was not in contact with the rolls. A simple mathematical model was derived by considering the longitudinal bending strain and the geometrical relationships of forming parameters, to analyse the longitudinal strain development in the deformation process. In addition, the roll forming experiments on hat-type profile parts of Q&P980 steel were carried out, and the theoretical analysis and simulation results are consistent with the experimental results.

Keywords

Roll forming Numerical simulation Q&P980 steel Deformation area 

Notes

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC) (Nos. 50905001 and 51074204), Beijing Municipal Natural Science Foundation (No. 3112010) and Beijing Municipal Natural Science Foundation–Beijing Municipal Education Commission (No. KZ201910009011) for their financial support. Also, thanks are given to the Beijing Youth Talent Support Program (No. 2014000026833ZK12) and Yujie Talent Support Program of North China University of Technology (No. 18XN154-005).

References

  1. [1]
    L. Komgrit, H. Hamasaki, R. Hino, F. Yoshida, J. Mater. Process. Technol. 229 (2016) 199–206.CrossRefGoogle Scholar
  2. [2]
    J.Y. Lee, F. Barlat, M.G. Lee, Int. J. Plast. 71 (2015) 113–135.CrossRefGoogle Scholar
  3. [3]
    A. Ghaei, D.E. Green, A. Aryanpour, Mater. Des. 88 (2015) 461–470.CrossRefGoogle Scholar
  4. [4]
    W.J. Oh, C.M. Lee, Int. J. Precis. Eng. Manuf. 19 (2018) 299–302.CrossRefGoogle Scholar
  5. [5]
    M. Weiss, J. Marnette, P. Wolfram, J. Larrañaga, P. Hodgson, Key Eng. Mater. 504–506 (2012) 797–802.CrossRefGoogle Scholar
  6. [6]
    K. Mäntyjärvi, M. Merklein, J.A. Karjalainen, Key Eng. Mater. 410–411 (2009) 661–668.CrossRefGoogle Scholar
  7. [7]
    M. Lundberg, A. Melander, in: IDDRG 2008 International Conference, Olofström, Sweden, 2008, pp. 331–338.Google Scholar
  8. [8]
    M. Kiuchi, T. Koudabashi, F. Etou, Seisan Kenkyu 34 (1982) 339–342.Google Scholar
  9. [9]
    M. Kiuchi, K. Abe, R. Onodera, CIRP Ann. 44 (1995) 239–242.CrossRefGoogle Scholar
  10. [10]
    C.F. Liu, W.L. Zhou, X.S. Fu, G.Q. Chen, Int. J. Adv. Manuf. Technol. 79 (2015) 1055–1061.CrossRefGoogle Scholar
  11. [11]
    B.D. Joo, S.W. Han, S.G.R. Shin, Y.H. Moon, Int. J. Automot. Technol. 16 (2015) 83–88.CrossRefGoogle Scholar
  12. [12]
    X.L. Liu, J.G. Cao, X.T. Chai, Z.L. He, J. Liu, R.G. Zhao, Int. J. Adv. Manuf. Technol. 95 (2018) 1837–1848.CrossRefGoogle Scholar
  13. [13]
    B. Abeyrathna, B. Rolfe, M. Weiss, Int. J. Adv. Manuf. Technol. 92 (2017) 743–754.CrossRefGoogle Scholar
  14. [14]
    R. Safdarian, H.M. Naeini, Thin. Wall. Struct. 92 (2015) 130–136.CrossRefGoogle Scholar
  15. [15]
    J. Paralikas, K. Salonitis, G. Chryssolouris, Int. J. Adv. Manuf. Technol. 56 (2011) 475–491.CrossRefGoogle Scholar
  16. [16]
    A. Abvabi, B. Rolfe, P.D. Hodgson, M. Weiss, Int. J. Mech. Sci. 101–102 (2015) 124–136.CrossRefGoogle Scholar
  17. [17]
    X.L. Liu, J.G. Cao, X.T. Chai, J. Liu, R.G. Zhao, N. Kong, J. Manuf. Process. 29 (2017) 289–297.CrossRefGoogle Scholar
  18. [18]
    J.H. Wiebenga, M. Weiss, B. Rolfe, A.H. van den Boogaard, J. Mater. Process. Technol. 213 (2013) 978–986.CrossRefGoogle Scholar
  19. [19]
    G. Zeng, S.H. Li, Z.Q. Yu, X.M. Lai, Mater. Des. 30 (2009) 1930–1938.CrossRefGoogle Scholar
  20. [20]
    F. Han, L.L. Niu, Y. Wang, Y.H. Yang, Chin. J. Mech. Eng. 52 (2018) 131–137.CrossRefGoogle Scholar
  21. [21]
    D. Bhattacharyya, P.D. Smith, C.H. Yee, L.F. Collins, J. Mech. Work. Tech. 9 (1984) 181–191.CrossRefGoogle Scholar
  22. [22]
    S.M. Panton, S.D. Zhu, J.L. Duncan, P. I. Mech. Eng. B-J. Eng. 206 (1992) 113–118.Google Scholar
  23. [23]
    S.D. Zhu, Theoretical and experimental analysis of roll forming, University of Auckland, New Zealand, 1993.Google Scholar
  24. [24]
    M. Lindgren, J. Mater. Process. Technol. 186 (2007) 77–81.CrossRefGoogle Scholar
  25. [25]
    M. Lindgren, Experimental and computational investigation of the roll forming process, Luleå University of Technology, Luleå, 2009.Google Scholar
  26. [26]
    B. Abeyrathna, B. Rolfe, P. Hodgson, M. Weiss, Int. J. Adv. Manuf. Technol. 88 (2017) 2405–2415.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Mechanical and Materials EngineeringNorth China University of TechnologyBeijingChina

Personalised recommendations