Advertisement

Effect of W addition on hot deformation and precipitation behaviors of 19Cr2Mo ferritic stainless steel

  • Hou-long Liu
  • Ming-yu Ma
  • Ling-ling Liu
  • Liang-liang Wei
  • Li-qing ChenEmail author
Original Paper
  • 4 Downloads

Abstract

The hot deformation behavior of 19Cr2Mo and 19Cr2Mo1W ferritic stainless steels was studied by using uniaxial hot compression tests on a thermomechanical simulator. The hot deformation was carried out at temperature ranging from 800 to 1150 °C and strain rates from 0.01 to 10 s−1. Microstructure change and precipitation behavior during hot deformation were investigated by optical microscopy, electron probe microanalysis and transmission electron microscopy. The effects of temperature and strain rate on deformation behavior were obtained by a classical equation in Zener–Hollomon parameter. Since W addition to 19Cr2Mo1W steel could refine the size of the precipitates to enhance the precipitation strengthening and also had the effect of solution strengthening, the dynamic recrystallization, dynamic recovery and grain growth of 19Cr2Mo1W ferritic stainless steel were inhibited to a certain extent. The precipitate size of 19Cr2Mo1W steel was finer than that of 19Cr2Mo steel under the same deformation condition, which is due to the fact that the atomic diffusion is suppressed by W addition. W addition increased the amount of Laves phase in 19Cr2Mo1W steel, and thus Laves phase in 19Cr2Mo1W steel could be formed at higher temperature than that in 19Cr2Mo steel.

Keywords

Ferritic stainless steel Tungsten Hot deformation behavior Microstructure evolution Precipitation Laves phase 

Notes

Acknowledgements

The authors gratefully acknowledge the joint financial support from the National Natural Science Foundation of China and Baowu Steel Group Co., Ltd. (Grant No. U1660205).

References

  1. [1]
    J.K. Kim, Y.H. Kim, S.H. Uhmb, J.S. Lee, K.Y. Kim, Corros. Sci. 51 (2009) 2716–2723.CrossRefGoogle Scholar
  2. [2]
    D. Oh, K. Han, S. Hong, C. Lee, Mater. Sci. Eng. A 555 (2012) 44–51.CrossRefGoogle Scholar
  3. [3]
    L. Faivre, P.O. Santacreu, A. Acher, Mater. High Temp. 30 (2013) 36–42.CrossRefGoogle Scholar
  4. [4]
    M. Ekström, S. Jonsson, Mater. Sci. Eng. A 616 (2014) 78–87.CrossRefGoogle Scholar
  5. [5]
    L.L. Wei, L.Q. Chen, M.Y. Ma, H.L. Liu, R.D.K. Misra, Mater. Chem. Phys. 205 (2018) 508–517.CrossRefGoogle Scholar
  6. [6]
    Y.T. Chiu, C.K. Lin, J. Power Sources 198 (2012) 149–157.CrossRefGoogle Scholar
  7. [7]
    A. Safikhani, M. Aminfard, Int. J. Hydrogen Energy 39 (2014) 2286–2296.CrossRefGoogle Scholar
  8. [8]
    J.S. Kim, H.S. Kwon, Corrosion 55 (1999) 512–521.CrossRefGoogle Scholar
  9. [9]
    F. Abe, Mater. Sci. Eng. A 319 (2001) 770–773.CrossRefGoogle Scholar
  10. [10]
    J. Froitzheim, G.H. Meier, L. Niewolak, P.J. Ennis, H. Hattendorf, L. Singheiser, W.J. Quadakkers, J. Power Sources 178 (2008) 163–173.CrossRefGoogle Scholar
  11. [11]
    W. Du, L.Z. Jiang, Q.S. Sun, Z.Y. Liu, X. Zhang, J. Iron Steel Res. Int. 17 (2010) No. 6, 47–52.CrossRefGoogle Scholar
  12. [12]
    F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, Mater. Charact. 75 (2013) 93–100.CrossRefGoogle Scholar
  13. [13]
    M. Masoumi, F.E.U. Reis, M.O.D. Castro, M. Béresa, H.F.G.D. Abreua, J. Mater. Res. Tech. 6 (2017) 232–240.CrossRefGoogle Scholar
  14. [14]
    F.C. Ren, F. Chen, J. Chen, X.Y. Tang, J. Manuf. Process. 31 (2018) 640–649.CrossRefGoogle Scholar
  15. [15]
    S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 571 (2013) 1–12.CrossRefGoogle Scholar
  16. [16]
    G.M. Zhang, Z.J. Zhou, H.Y. Sun, L. Zou, M. Wang, S.F. Li, J. Nucl. Mater. 455 (2014) 139–144.CrossRefGoogle Scholar
  17. [17]
    X.Z. Zhang, X.J. Wu, R. Liu, J. Liu, M.X. Yao, Mater. Sci. Eng. A 706 (2017) 279–286.CrossRefGoogle Scholar
  18. [18]
    D. Oh, K. Hana, S. Hongb, C. Lee, Proc. Eng. 10 (2011) 383–389.CrossRefGoogle Scholar
  19. [19]
    Y.T. Chiu, C.K. Lin, J.C. Wu, J. Power Sources 196 (2011) 2005–2012.CrossRefGoogle Scholar
  20. [20]
    Y. Cao, H.S. Di, R.D.K. Misra, X. Yi, J.C. Zhang, T.J. Ma, Mater. Sci. Eng. A 593 (2014) 111–119.CrossRefGoogle Scholar
  21. [21]
    F. Gao, F.X. Yu, H.T. Liu, Z.Y. Liu, J. Iron Steel Res. Int. 22 (2015) 827–836.CrossRefGoogle Scholar
  22. [22]
    C. Zhang, Z.Y. Liu, G.D. Wang, J. Mater. Process. Technol. 211 (2011) 1051–1059.CrossRefGoogle Scholar
  23. [23]
    S.M. Kim, Y.S. Chun, S.Y. Won, Y.H. Kim, C.S. Lee, Metall. Mater. Trans. A 44 (2013) 1331–1339.CrossRefGoogle Scholar
  24. [24]
    A.Y. Churyumov, M.G. Khomutov, A.N. Solonin, A.V. Pozdniakov, T.A. Churyumova, B.F. Minyaylo, Mater. Des. 74 (2015) 44–54.CrossRefGoogle Scholar
  25. [25]
    D.R. Askeland, P.P. Fulay, Essentials of materials science and engineering, 2nd ed., CENGAGE Learning, Boston, 2010.Google Scholar
  26. [26]
    N Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng. A 351 (2003) 272–281.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Hou-long Liu
    • 1
  • Ming-yu Ma
    • 1
  • Ling-ling Liu
    • 1
  • Liang-liang Wei
    • 1
  • Li-qing Chen
    • 1
    Email author
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations