Softening and recrystallization behavior of a new class of ferritic steel

  • Xiang-yu Xu
  • Jian-zhe Li
  • Xue-min WangEmail author
  • Wei Zhang
  • Qian-nan Liu
  • Cheng-jia Shang
  • R. D. K. Misra
Original Paper


In order to clarify the recrystallization mechanism of low-density δ-ferrite steel Fe–4Al–2Ni, interrupted and single-pass compression tests were carried out. In this regard, five deformation temperatures (750–950 at an interval of 50 °C) and different hold time were selected. It was observed that the softening and recrystallization fraction was enhanced with increased deformation temperature and hold time. The original grain boundaries were the preferred nucleation sites for recrystallized grains, and recrystallization had an impact on obtaining homogeneous and fine-grained structure. Recrystallization in the ferritic alloy commenced after a significant degree of softening, and the softening associated with recovery was appreciably less. The optimum rolling deformation temperature was identified to be greater than 900 °C.


δ-ferrite steel Interrupted compression test Recovery Recrystallization 



This work was financially supported by National Key R&D Program of China (2017YFB0304700, 2017YFB0304701).


  1. [1]
    L. Zhang, R. Song, C. Zhao, F. Yang, S. Qin, X.U. Yang, Mater. Rev. 28 (2014) 111–118.Google Scholar
  2. [2]
    R. Rana, C. Liu, R. Ray, Scripta Mater. 68 (2013) 354–359.CrossRefGoogle Scholar
  3. [3]
    G. Frommeyer, E. Drewes, B. Engl, Rev. Metall. 97 (2000) 1245–1253.CrossRefGoogle Scholar
  4. [4]
    T. Nishimura, T. Kodama, Corros. Sci. 45 (2003) 1073–1084.CrossRefGoogle Scholar
  5. [5]
    X. Chen, J. Dong, E. Han, W. Ke, Corros. Eng. Sci. Technol. 42 (2007) 224–231.CrossRefGoogle Scholar
  6. [6]
    T. Nishimura, A. Tahara, T. Kodama, Mater. Trans. 42 (2001) 478–483.CrossRefGoogle Scholar
  7. [7]
    T. Doi, K. Kitamura, K. Nakanishi, K. Kashima, T. Kamimura, H. Miyuki, T. Ohta, M. Yamashita, J. Jpn. Inst. Met. 74 (2010) 10–18.CrossRefGoogle Scholar
  8. [8]
    D.C. Xu, Y.D. Liu, L. Jun, Q.G. Meng, P. Li, J. Iron Steel Res. Int. 23 (2016) 138–144.CrossRefGoogle Scholar
  9. [9]
    D.D. Zhuang, L.G. Wang, Y. Huang, X.M. Li, H.Y. Zhang, D.W. Ren, J. Iron Steel Res. Int. 24 (2017) 84–90.CrossRefGoogle Scholar
  10. [10]
    P. Zhou, Q.X. Ma, J. Iron Steel Res. Int. 24 (2017) 222–228.CrossRefGoogle Scholar
  11. [11]
    C. Castan, F. Montheillet, A. Perlade, Scripta Mater. 68 (2013) 360–364.CrossRefGoogle Scholar
  12. [12]
    A. Fernández, B. López, J. Rodrıguez-Ibabe, Scripta Mater. 5 (1999) 543–549.CrossRefGoogle Scholar
  13. [13]
    K. Rao, Y. Prasad, E.B. Hawbolt, J. Mater. Process. Technol. 77 (1998) 166–174.CrossRefGoogle Scholar
  14. [14]
    H. McQueen, M. Akben, J. Jonas, in: Proceedings of the fifth RISO International Symppsium on Metallurgy and Material Science, Riso Natl. Lab., Roskilde, 1984, pp. 397–404.Google Scholar
  15. [15]
    P. Manohar, M. Ferry, T. Chandra, in: K.H.J. Buschow, R. Cahn, M.C. Flemings, S. Mahajan, B. Ilschner, E.J. Kramer, P. Veyssiere (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, 2001, pp. 3019–3024.Google Scholar
  16. [16]
    D.T. Jiao, Q.W. Cai, H.B. Wu, Y. Ren, J. Iron Steel Res. Int. 17 (2010) No. 8, 39-44.CrossRefGoogle Scholar
  17. [17]
    F.R. Xiao, Y.B. Cao, G.Y. Qiao, X.B. Zhang, B. Liao, J. Iron Steel Res. Int. 19 (2012) No.11, 52–56.CrossRefGoogle Scholar
  18. [18]
    X.D. Huo, X.P. Mao, S.X. Lü, J. Iron Steel Res. Int. 20 (2013) No. 9, 105–110.CrossRefGoogle Scholar
  19. [19]
    T. Maki, S. Okaguchi, I. Tamura, in: R.C Gifkins (Ed.), Strength of Metals and Alloys (ICSMA 6), Elsevier, 1982, pp. 529–534.Google Scholar
  20. [20]
    D. Barraclough, C. Sellars, Met. Sci. 13 (1979) 257–268.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Xiang-yu Xu
    • 1
  • Jian-zhe Li
    • 2
  • Xue-min Wang
    • 1
    Email author
  • Wei Zhang
    • 2
  • Qian-nan Liu
    • 1
  • Cheng-jia Shang
    • 1
  • R. D. K. Misra
    • 3
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.Laboratory for Excellence in Advanced Steel Research, Materials Science and Engineering Program, Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations