Skip to main content
Log in

Deformation behavior and microstructural evolution in ultra-high-strength dual-phase (UHS-DP1000) steel with different strain rates

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The dynamic tensile behavior and deformation mechanism of ultra-high-strength dual-phase (UHS-DP1000) steel were investigated over a wide range of strain rates from 10−4 to 103 s−1. As the strain rate increases, the transition strain decreases from 2.73 to 1.92, and the martensite plastic deformation starts earlier. At strain rate of 10−4–0.5 s−1, the inhomogeneous plastic deformation ability increases because the dislocation density in the ferrite matrix increases. This leads to a decrease in uniform elongation and an increase in fracture elongation. When the strain rate increases from 0.5 to 500 s−1, the amount of mobile dislocation increases, which is the main reason for the enhancing uniform elongation and fracture elongation. Meanwhile, because the dislocation motion resistance rapidly increases, the yield strength and ultimate tensile strength also increase. When the strain rate is higher than 500 s−1, the hardening behavior caused by the dislocation motion resistance has not been offset by softening due to the mobile dislocation and adiabatic heating. The voids at the early stage of deformation could not uniformly form and grow, and thus the homogeneous plastic deformation ability decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Huang, Y.X. Zhao, C.F. He, J. Iron Steel Res. Int. 21 (2014) 938–944.

    Article  Google Scholar 

  2. T.T. Huang, R.B. Gou, W.J. Dan, W.G. Zhang, Mater. Sci. Eng. A 672 (2016) 88–97.

    Article  Google Scholar 

  3. X.L. Ji, J.Y. Wang, C.C. Ji, J.H. Zhao, J. Iron Steel Res. Int. 22 (2015) 317–323.

    Article  Google Scholar 

  4. H. Ghassemi-Armaki, R. Maaß, S.P. Bhat, S. Sriram, J.R. Greer, K.S. Kumar, Acta Mater. 62 (2014) 197–211.

    Article  Google Scholar 

  5. G. Toktas, A. Toktas, A.D. Karaoglan, J. Iron Steel Res. Int. 21 (2014) 715–722.

    Article  Google Scholar 

  6. Z.Z. Zhao, T.T. Tong, J.H. Liang, H.X. Yin, A.M. Zhao, D. Tang, Mater. Sci. Eng. A 618 (2014) 182–188.

    Article  Google Scholar 

  7. Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Mater. Sci. Eng. A 619 (2014) 1–11.

    Article  Google Scholar 

  8. M.P. Rao, V.S. Sarma, S. Sankaran, Metall. Mater. Trans. A 48 (2017) 1176–1188.

    Article  Google Scholar 

  9. Y. Tomita, K. Okabayashi, Metall. Trans. A 16 (1985) 865–872.

    Article  Google Scholar 

  10. N.D. Beynon, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 21 (2005) 103–112.

    Article  Google Scholar 

  11. S. Curtze, V.T. Kuokkala, M. Hokka, P. Peura, Mater. Sci. Eng. A 507 (2009) 124–131.

    Article  Google Scholar 

  12. H.J. Cai, H.J. Fan, R.B. Song, Q.F. Dai, Chin. J. Eng. 52 (2016) No. 2, 213–222.

    Google Scholar 

  13. H.D. Yu, Y.J. Guo, X.M. Lai, Mater. Des. 30 (2009) 2501–2505.

    Article  Google Scholar 

  14. S. Oliver, T.B. Jones, G. Fourlaris, Mater. Sci. Technol. 23 (2007) 423–431.

    Article  Google Scholar 

  15. Q.F. Dai, R.B. Song, W.Y. Fan, Z.F. Guo, X.X. Guan, Acta Metall. Sin. 48 (2012) 1160–1165.

    Article  Google Scholar 

  16. Y. Gao, X. Chao, Z. He, Y.L. He, L. Li, J. Iron Steel Res. Int. 22 (2015) 48–54.

    Article  Google Scholar 

  17. G.C. Soares, B.M. Gonzalez, L. de Arruda Santos, Mater. Sci. Eng. A 684 (2017) 577–585.

  18. B.K. Jha, R. Avtar, V.S. Dwivedi, V. Ramaswany, J. Mater. Sci. Lett. 6 (1987) 891–893.

    Article  Google Scholar 

  19. S.O. Gashti, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, J. Alloy. Compd. 658 (2016) 854–861.

    Article  Google Scholar 

  20. S. Vafaeian, A. Fattah-Alhosseini, Y. Mazaheri, M.K. Keshavarz, Mater. Sci. Eng. A 669 (2016) 480–489.

    Article  Google Scholar 

  21. H. Ashrafi, M. Shamanian, R. Emadi, N. Saeidi, Trans. Indian Inst. Met. 70 (2017) 1575–1584.

    Article  Google Scholar 

  22. L.F. Ramos, D.K. Matlock, G. Krauss, Metall. Trans. A 10 (1979) 259–261.

    Article  Google Scholar 

  23. H.W. Swift, J. Mech. Phys. Solids 1 (1952) 1–18.

    Article  Google Scholar 

  24. D. Das, P.P. Chattopadhyay, J. Mater. Sci. 44 (2009) 2957–2965.

    Article  Google Scholar 

  25. Y.G. Ko, C.W. Lee, S. Namgung, D.H. Shin, J. Alloy. Compd. 504 (2010) S452–S455.

    Article  Google Scholar 

  26. T. Matsuno, C. Teodosiu, D. Maeda, A. Uenishi, Int. J. Plast. 74 (2015) 17–34.

    Article  Google Scholar 

  27. R. Kapoor, S. Nemat-Nasser, Metall. Mater. Trans. A 31 (2000) 815–823.

    Article  Google Scholar 

  28. W.G. Johnston, J.J. Gilman, J. Appl. Phys. 30 (1959) 129–144.

    Article  Google Scholar 

  29. S. Curtze, V.T. Kuokkala, Matéria (Rio de Janeiro) 15 (2010) 157–163.

    Article  Google Scholar 

  30. D.Y. Dong, Y. Liu, Y.L. Yang, M. Ma, T. Jiang, Mater. Sci. Eng. A 594 (2014) 17–25.

    Article  Google Scholar 

  31. G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner, P.M. Gullett, Int. J. Plast. 22 (2006) 257–278.

    Article  Google Scholar 

  32. G. Avramovic-Cingara, C.A.R. Saleh, M.K. Jain, D.S. Wilkinson, Metall. Mater. Trans. A 40 (2009) 3117–3127.

    Article  Google Scholar 

  33. M. Azuma, Structural control of void formation in dual phase steels, Technical University of Denmark, Lyngby, 2013.

    Google Scholar 

  34. M. Azuma, S. Goutianos, N. Hansen, G. Winther, X. Huang, Mater. Sci. Technol. 28 (2012) 1092–1100.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the National Key R&D Program of China (Grant No. 2017YFB0304404) and Shandong Provincial Natural Science Foundation of China (Grant No. ZR2018MEM007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-li Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Li, H., Jiang, Rt. et al. Deformation behavior and microstructural evolution in ultra-high-strength dual-phase (UHS-DP1000) steel with different strain rates. J. Iron Steel Res. Int. 26, 173–181 (2019). https://doi.org/10.1007/s42243-018-0213-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0213-1

Keywords

Navigation