Advertisement

Influence rule of downtime on heat transfer in converters

  • Shuai Deng
  • An-jun XuEmail author
  • Rui-yu Yin
Original Paper
  • 27 Downloads

Abstract

The models for calculating the heat transfer in converters allow the accurate control of heat dissipation caused by downtime, and thus help increase scrap ratio and reduce energy consumption. ANSYS 17 was used to establish such a model to analyse the coupling law between the downtime and heat dissipation of the converter and the temperature drop of molten iron. Temperature was measured by infrared detection, and model accuracy was verified by comparative analysis. The variation law of the amount of cold charge added for different downtimes under different process conditions was studied. The results show that the range of the variation of heat dissipation caused by downtime is 8.9–78.5 GJ. If the downtime increases by 30 min, heat dissipation of dephosphorisation (deP) and decarburisation (deC) converters increases by about 23.4 and 41.3 GJ, respectively. In a certain smelting cycle, the temperature drop of the molten iron for deP, deC and conventional converters increases by about 12.5, 15.0 and 17.0 K, respectively; and the amount of scrap added in the double-linking and conventional smelting processes decreases by 0.93 and 0.75%, respectively.

Keywords

Downtime Converter heat dissipation Scrap ratio Temperature field Finite element 

Notes

Acknowledgements

The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant Nos. 51674030 and 51574032) and the National Key Research and Development Program of China (Grant No. 2016YFB0601301).

References

  1. [1]
    R.D. Pehlke, W.F. Porter, R.F. Urban, J.M. Gaines, BOF steelmaking, Iron and Steel Society of AIME, London, UK, 1977.Google Scholar
  2. [2]
    K. Sahoo, G.V. Babu, P.N. Rao, S. Jee, in: AISTech-Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, Warrendale, USA, 2014, pp. 287–295.Google Scholar
  3. [3]
    H. Sun, Y.C. Liu, M.J. Lu, Ironmak. Steelmak. 43 (2016) 697–704.CrossRefGoogle Scholar
  4. [4]
    Y. Lytvynyuk, J. Schenk, M. Hiebler, A. Sormann, Steel Res. Int. 85 (2014) 537–543.CrossRefGoogle Scholar
  5. [5]
    V.V. Visuri, M. Järvinen, P. Sulasalmi, E.P. Heikkinen, J. Savolainen, T. Fabritius, ISIJ Int. 53 (2013) 603–612.CrossRefGoogle Scholar
  6. [6]
    Y.I. Tseluiko, L.A. Vishnevskaya, G.F. Gul’ev, Refractories 6 (1965) 492–498.CrossRefGoogle Scholar
  7. [7]
    V.S. Bogushevskii, N.A. Sorokin, I.L. Ligotskii, Refractories 31 (1990) 211–219.CrossRefGoogle Scholar
  8. [8]
    É.A. Visloguzova, I.D. Kashcheev, K.G. Zemlyanoi, Refract. Ind. Ceram. 54 (2013) 83–87.CrossRefGoogle Scholar
  9. [9]
    H.J. Odenthal, U. Falkenreck, J. Schlüter, in: P. Wesseling, E. Oñate, J. Périaux (Eds.), Proc. European Conf. on Computational Fluid Dynamics, TU Delft, The Netherlands, 2006, pp. 1–21.Google Scholar
  10. [10]
    H.J. Odenthal, U. Thiedemann, U. Falkenreck, J. Schlueter, Metall. Mater. Trans. B 41 (2010) 396–413.CrossRefGoogle Scholar
  11. [11]
    A.J. Yan, J. Wuhan Univ. Sci. Technol. 33 (2010) 255–258.Google Scholar
  12. [12]
    Z.L. Yang, G.J. Zhu, B.M. Wang, Steelmaking 21 (2005) No. 5, 50–53.Google Scholar
  13. [13]
    H. Li, Refractory handbook, Metallurgical Industry Press, Beijing, China, 2007.Google Scholar
  14. [14]
    J. Chen, Handbook of common chart data for steelmaking process, Metallurgical Industry Press, Beijing, China, 1984.Google Scholar
  15. [15]
    O. Volkova, D. Janke, ISIJ Int. 43 (2003) 1185–1190.CrossRefGoogle Scholar
  16. [16]
    G. Li, J. Liu, G. Jiang, H. Liu, Adv. Mech. Eng. 7 (2015) 1687814015575988.Google Scholar
  17. [17]
    F. Yuan, A.J. Xu, D.F. He, H.B. Wang, J. Harbin Inst. Technol. 48 (2016) No. 7, 176–181.Google Scholar
  18. [18]
    G. Solorio-Diaz, R. Davila-Morales, J. de Jesus Barreto-Sandoval, H.J. Vergara-Hernández, A. Ramos-Banderas, S.R. Galvan, Steel Res. Int. 85 (2014) 863–874.CrossRefGoogle Scholar
  19. [19]
    S.W.P. Cloete, J.J. Eksteen, S.M. Bradshaw, Miner. Eng. 46–47 (2013) 16–24.CrossRefGoogle Scholar
  20. [20]
    N.K. Nath, K. Mandal, A.K. Singh, B. Basu, C. Bhanu, S. Kumar, A. Ghosh, Ironmak. Steelmak. 33 (2006) 140–150.CrossRefGoogle Scholar
  21. [21]
    D. Gruber, H. Harmuth, Steel Res. Int. 79 (2008) 913–917.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations