Advertisement

Effect of Al2O3/SiO2 and CaO/Al2O3 ratios on wettability and structure of CaO–SiO2–Al2O3-based mold flux system

  • Wan-lin Wang
  • Er-zhuo Gao
  • Le-jun ZhouEmail author
  • Lei Zhang
  • Huan Li
Original Paper
  • 37 Downloads

Abstract

The effect of Al2O3/SiO2 and CaO/Al2O3 ratios on the molten structure of CaO–SiO2–Al2O3-based mold flux system was analyzed by Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. Also, the variation in the wettability between the mold flux system and an interstitial free (IF) steel substrate was investigated using the sessile drop method. The results indicate that the contact angle and interfacial tension between the molten slag and solid steel increase slightly with the increase in the Al2O3/SiO2 ratio, while they decrease with the increase in the CaO/Al2O3 ratio. The network structure for the designed mold flux system changes gradually from silicate to aluminosilicate and aluminate with the increase in the Al2O3/SiO2 ratio, and the network is simplified with the increase in the CaO/Al2O3 ratio. Besides, combining the results of sessile drop method and melt structure analyses, it suggests that the variation in interfacial properties of mold flux/IF steel substrate is mainly caused by the change in melt structure, especially the variation in free oxygen ions (O2−) and non-bridged oxygen (O) at the interface.

Keywords

Wettability Melt structure Interfacial tension Sessile drop method Mold flux system 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1760202, 51661130154, 51874363) and Newton Advanced Fellowship (NA150320).

References

  1. [1]
    W. Wang, K. Blazek, A. Cramb, Metall. Mater. Trans. B 39 (2008) 66–74.CrossRefGoogle Scholar
  2. [2]
    L. Zhou, W. Wang, K. Zhou, Metals 6 (2016) 139.CrossRefGoogle Scholar
  3. [3]
    A. Jakobsson, D. Sichen, S. Seetharaman, N.N. Viswanathan, Metall. Mater. Trans. B 31 (2000) 973–980.CrossRefGoogle Scholar
  4. [4]
    J. Safarian, M. Tangstad, Metall. Mater. Trans. B 40 (2009) 920–928.CrossRefGoogle Scholar
  5. [5]
    H. Sun, W. Easman, Energy Fuels 21 (2007) 413–418.CrossRefGoogle Scholar
  6. [6]
    I. Egry, G. Lohöfer, I. Seyhan, S. Schneider, B. Feuerbacher, Int. J. Thermophys. 20 (1999) 1005–1015.CrossRefGoogle Scholar
  7. [7]
    K. Ogino, S. Hara, T. Miwa, S. Kimoto, Trans. ISIJ 24 (1984) 522–531.CrossRefGoogle Scholar
  8. [8]
    H. Sun, K. Nakashima, K. Mori, ISIJ Int. 37 (1997) 323–331.CrossRefGoogle Scholar
  9. [9]
    C. Dumay, A.W. Cramb, Metall. Mater. Trans. B 26 (1995) 173–176.CrossRefGoogle Scholar
  10. [10]
    A. Sharan, A.W. Cramb, Metall. Mater. Trans. B 28 (1997) 465–472.CrossRefGoogle Scholar
  11. [11]
    J.B. Kim, J.K. Choi, I.W. Han, I. Sohn, J. Non-Cryst. Solids 432 (2016) 218–226.CrossRefGoogle Scholar
  12. [12]
    Y. Chung, A.W. Cramb, Metall. Mater. Trans. B 31 (2000) 957–971.CrossRefGoogle Scholar
  13. [13]
    M.A. Rhamdhani, G.A. Brooks, K.S. Coley, Metall. Mater. Trans. B 37 (2006) 1087–1091.CrossRefGoogle Scholar
  14. [14]
    Z. Liu, B. Li, L. Zhang, G. Xu, ISIJ Int. 54 (2014) 2324–2333.CrossRefGoogle Scholar
  15. [15]
    P. Rocabois, J. Lehmann, C. Gatellier, J.P. Teres, Ironmak. Steelmak. 30 (2003) 95–100.CrossRefGoogle Scholar
  16. [16]
    J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, P. Jönsson, Mater. Sci. Eng. A 495 (2008) 316–319.CrossRefGoogle Scholar
  17. [17]
    C.G. Aneziris, E.M. Pfaff, H.R. Maier, J. Eur. Ceram. Soc. 20 (2000) 159–168.CrossRefGoogle Scholar
  18. [18]
    W. Wang, J. Li, L. Zhou, J. Yang, Met. Mater. Int. 22 (2016) 700–706.CrossRefGoogle Scholar
  19. [19]
    E.J. Jung, W. Kim, I. Sohn, D.J. Min, J. Mater. Sci. 45 (2010) 2023–2029.CrossRefGoogle Scholar
  20. [20]
    E.J. Jung, D.J. Min, Steel Res. Int. 83 (2012) 705–711.CrossRefGoogle Scholar
  21. [21]
    L. Zhou, J. Li, W. Wang, I. Sohn, Metall. Mater. Trans. B 48 (2017) 1943–1950.CrossRefGoogle Scholar
  22. [22]
    E. Gao, G. Zou, W. Wang, F. Ma, X. Luo, Metall. Mater. Trans. B 48 (2017) 1014–1023.CrossRefGoogle Scholar
  23. [23]
    X. Luo, W. Wang, F. Ma, ISIJ Int. 56 (2016) 1333–1341.CrossRefGoogle Scholar
  24. [24]
    H. Kim, W.H. Kim, I. Sohn, D.J. Min, Steel Res. Int. 81 (2010) 261–264.CrossRefGoogle Scholar
  25. [25]
    T. Young, G. Peacock, Miscellaneous Works of the Late Thomas Young V1: Including His Scientific Memoirs, Kessinger Publishing LLC, Montana, 2007.Google Scholar
  26. [26]
    R.F. Brooks, I. Egry, S. Seetharaman, D. Grant, High Temp.-High Press. 33 (2001) 631–637.CrossRefGoogle Scholar
  27. [27]
    R.E. Boni, G. Derge, JOM 8 (1956) 53–59.CrossRefGoogle Scholar
  28. [28]
    K. Nakashima, K. Mori, ISIJ Int. 32 (1992) 11–18.CrossRefGoogle Scholar
  29. [29]
    M. Nakamoto, A. Kiyose, T. Tanaka, L. Holappa, M. Hämäläinen, ISIJ Int. 47 (2007) 38–43.CrossRefGoogle Scholar
  30. [30]
    M. Nakamoto, T. Tanaka, L. Holappa, M. Hämäläinen, ISIJ Int. 47 (2007) 211–216.CrossRefGoogle Scholar
  31. [31]
    N. Ikemiya, J. Umemoto, S. Hara, K. Ogino, ISIJ Int. 33 (1993) 156–165.CrossRefGoogle Scholar
  32. [32]
    K. Ogino, H. Taimatsu, F. Nakatani, J. Jpn. Inst. Metals 46 (1982) 957–962.CrossRefGoogle Scholar
  33. [33]
    D. Chatain, F. Chabert, V. Ghetta, J. Fouletier, J. Am. Ceram. Soc. 77 (1994) 197–201.CrossRefGoogle Scholar
  34. [34]
    A. Sharan, A.W. Cramb, Metall. Mater. Trans. B 26 (1995) 87–94.CrossRefGoogle Scholar
  35. [35]
    H. Sun, K. Nakashima, K. Mori, ISIJ Int. 46 (2006) 407–412.CrossRefGoogle Scholar
  36. [36]
    D.W. Matson, S.K. Sharma, J.A. Philpotts, J. Non-Cryst. Solids 58 (1983) 323–352.CrossRefGoogle Scholar
  37. [37]
    B.O. Mysen, Contrib. Mineral. Petrol. 133 (1998) 38–50.CrossRefGoogle Scholar
  38. [38]
    G.H. Kim, I. Sohn, ISIJ Int. 52 (2012) 68–73.CrossRefGoogle Scholar
  39. [39]
    T.S. Kim, J.H. Park, ISIJ Int. 54 (2014) 2031–2038.CrossRefGoogle Scholar
  40. [40]
    Y. Tsunawaki, N. Iwamoto, T. Hattori, A. Mitsuish, J. Non-Cryst. Solids 44 (1981) 369–378.CrossRefGoogle Scholar
  41. [41]
    G.H. Kim, I. Sohn, J. Non-Cryst. Solids 358 (2012) 1530–1537.CrossRefGoogle Scholar
  42. [42]
    G.W. Toop, C.S. Samis, Trans. Metall. Soc. AIME 224 (1962) 878–887.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Wan-lin Wang
    • 1
    • 2
  • Er-zhuo Gao
    • 1
    • 2
  • Le-jun Zhou
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  • Huan Li
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.National Center for International Research of Clean MetallurgyCentral South UniversityChangshaChina

Personalised recommendations