Advertisement

Surface adsorption and diffusion of N on γ-Fe–Al (111) using first principles calculations

  • Wen-shu Zhang
  • Cai-li ZhangEmail author
  • Nan Dong
  • Jian-guo Li
  • Pei-de Han
  • Zhu-xia Zhang
  • Li-xia Ling
Review
  • 11 Downloads

Abstract

The adsorption and diffusion of N on γ-Fe–Al (111) surface have been investigated using the first principle calculations combined with density functional theory to explore the formation mechanism of AlN in the oxidation process of austenitic stainless steel. The results indicate that the most preferential adsorption site of N on the surface of γ-Fe (111) is fcc-hollow site. In addition, the stable positions are located at fcc adsorption site on clean and Al-doped γ-Fe (111) surface adsorbed 4.76 at.% N. Compared with the pure Fe system, γ-Fe–Al (111) system reduces the energy difference of N from the surface to the bulk. The system is most stable for 9.09 at.% N adsorbed on the octahedral interstice of the 2nd and 3rd atom interlamination of γ-Fe–Al (111) surface. Thus, the doping of Al makes it easier to spread N on the surface of γ-Fe (111). The increase in N in the atmosphere also accelerates the diffusion. Moreover, according to the density of states analysis, the interaction between Al and N was enhanced when 9.09 at.% N was adsorbed on the surface of γ-Fe–Al (111).

Keywords

Nitrogen Surface adsorption Diffusion Austenitic stainless steel Density functional theory 

Notes

Acknowledgements

The authors would like to acknowledge the support of National Natural Science Foundation of China (Nos. 51371123 and 21576178), Natural Science Foundation of Shanxi Province (Nos. 201601D202034 and 2015011034), and Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, Shanxi Normal University, the China Scholarship Council (CSC).

References

  1. [1]
    J.P. Fu, N. Li, Q.L. Zhou, P.P. Guo, Oxid. Met. 83 (2015) 317–333.CrossRefGoogle Scholar
  2. [2]
    J.B. Yan, Y.F. Gu, F. Sun, Y.X. Xu, Y. Yuan, J.T. Lu, Z. Yang, Y.Y. Dang, Mater. Sci. Eng. A 675 (2016) 289–298.CrossRefGoogle Scholar
  3. [3]
    A.M. Huntz, A. Reckmann, C. Haut, C. Sévérac, M. Herbst, F.C.T. Resende, A.C.S. Sabioni, Mater. Sci. Eng. A 447 (2007) 266–276.CrossRefGoogle Scholar
  4. [4]
    M.P. Brady, Y. Yamamoto, M.L. Santella, B.A. Pint, Scripta Mater. 57 (2007) 1117–1120.CrossRefGoogle Scholar
  5. [5]
    F. Goutier, S. Valette, A. Vardelle, P. Lefort, Corros. Sci. 52 (2010) 2403–2412.CrossRefGoogle Scholar
  6. [6]
    X.Q. Xu, X.F. Zhang, G.L. Chen, Z.P. Lu, Mater. Lett. 65 (2011) 3285–3288.CrossRefGoogle Scholar
  7. [7]
    H. Buscail, S.E. Messki, F. Riffard, S. Perrier, R. Cueff, E. Caudron, C. Issartel, Mater. Chem. Phys. 111 (2008) 491–496.CrossRefGoogle Scholar
  8. [8]
    R. Elger, H. Magnusson, K. Frisk, Mater. Corros. 68 (2017) 143–150.CrossRefGoogle Scholar
  9. [9]
    A. Col, V. Parry, C. Pascal, Corros. Sci. 114 (2017) 17–27.CrossRefGoogle Scholar
  10. [10]
    E.J. Opila, Mater. Sci. Forum 461–464 (2004) 765–774.CrossRefGoogle Scholar
  11. [11]
    H. Asteman, J.E. Svensson, M. Norell, L.G. Johansson, Oxid. Met. 54 (2000) 11–26.CrossRefGoogle Scholar
  12. [12]
    H. Asteman, J.E. Svensson, L.G. Johansson, Corros. Sci. 44 (2002) 2635–2649.CrossRefGoogle Scholar
  13. [13]
    S.R.J. Saunders, M. Monteiro, F. Rizzo, Prog. Mater. Sci. 53 (2008) 775–837.CrossRefGoogle Scholar
  14. [14]
    Y.F. Yan, X.Q. Xu, D.Q. Zhou, H. Wang, Y. Wu, X.J. Liu, Z.P. Lu, Corros. Sci. 77 (2013) 202–209.CrossRefGoogle Scholar
  15. [15]
    J. Wang, Y.F. Qiao, N. Dong, X.D. Fang, X. Quan, Y.S. Cui, P.D. Han, Oxid. Met. 89 (2018) 713–730.CrossRefGoogle Scholar
  16. [16]
    T.M. Butler, J.P. Alfano, R.L. Martens, M.L. Weaver, JOM 67 (2015) 246–259.CrossRefGoogle Scholar
  17. [17]
    S. Tang, S. Zhu, X. Tang, H. Pan, X. Chen, Z.D. Xiang, Corros. Sci. 80 (2014) 374–382.CrossRefGoogle Scholar
  18. [18]
    M. Auinger, E.M. Müller-Lorenz, M. Rohwerder, Corros. Sci. 90 (2015) 503–510.CrossRefGoogle Scholar
  19. [19]
    B.A. Pint, J.A. Haynes, T.M. Besmann, Surf. Coat. Technol. 204 (2010) 3287–3293.CrossRefGoogle Scholar
  20. [20]
    S. Pirillo, I. López-Corral, E. Germán, A. Juan, Vacuum 99 (2014) 259–264.CrossRefGoogle Scholar
  21. [21]
    H. Ning, Z.Y. Zhou, Z.Y. Zhang, W.Z. Zhou, G.X. Li, J. Guo, Appl. Surf. Sci. 396 (2017) 851–856.CrossRefGoogle Scholar
  22. [22]
    W.B. Zhang, S.L. Zhang, Z.J. Zhang, L.L. Wang, W. Yang, Vacuum 110 (2014) 62–68.CrossRefGoogle Scholar
  23. [23]
    Z. Jiang, T. Fang, Vacuum 128 (2016) 252–258.CrossRefGoogle Scholar
  24. [24]
    D.E. Jiang, E.A. Carter, Phys. Rev. B 67 (2003) 214103.CrossRefGoogle Scholar
  25. [25]
    Z.S. Basinski, W. Hume-Rothery, F.R.S., A.L. Sutton, Proc. R. Soc. A 229 (1955) 459–467.Google Scholar
  26. [26]
    S.J. Lee, Y.K. Lee, A. Soon, Appl. Surf. Sci. 258 (2012) 9977–9981.CrossRefGoogle Scholar
  27. [27]
    C. Han, C.L. Zhang, X.L. Liu, H. Huang, S.Y. Zhuang, P.D. Han, X.L. Wu, J. Molecular Model. 21 (2015) 181.CrossRefGoogle Scholar
  28. [28]
    M.E. Mashuga, L.O. Olasunkanmi, A.S. Adekunle, S. Yesudass, M.M. Kabanda, E.E. Ebenso, Materials 8 (2015) 3607–3632.CrossRefGoogle Scholar
  29. [29]
    C. Han, C.L. Zhang, X.L. Liu, S.Y. Zhuang, H. Huang, P.D. Han, X.L. Wu, J. Molecular Model. 21 (2015) 206.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology)Ministry of EducationTaiyuanChina
  3. 3.College of Chemistry and Chemical EngineeringTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations