Advertisement

On microstructure characterization of Fe–Cr–Ni–Mo–N super-austenitic stainless steel during hot deformation

  • Yan-sen Hao
  • Jian Li
  • Wan-chun Liu
  • Wei-na Zhang
  • Zhen-yu LiuEmail author
Original Paper
  • 16 Downloads

Abstract

Hot compression tests of Fe–Cr–Ni–Mo–N super-austenitic stainless steel were carried out in the temperature range of 950–1150 °C with a strain rate of 0.01–10 s−1, in which dynamic recrystallization (DRX) mechanisms and coincident site lattice (CSL) boundary evolution in consideration of adiabatic heating were investigated. The results show that discontinuous DRX was the main DRX mechanism. Due to the high stacking fault energy (162–173 mJ/m2), subgrain evolution occurring in dynamic recovery process was stimulated at high temperatures and high strain rates. DRX behavior was accelerated by higher strain rate and adiabatic heating. Also, amounts of fine annealing twin boundaries were observed in the specimens deformed at higher strain rates and higher temperatures. By analyzing the length fractions of Σ3 boundary in overall boundaries and in CSL boundaries, the results indicate that Σ3 regeneration mechanism and new twinning mechanism take effect concurrently for twin-related grain boundary when the specimens were deformed at 950 °C with a strain rate of 0.01–10 s−1. With increasing strain rate or deformation temperature, the propagation of Σ3 boundaries was mainly dominated by new twinning mechanism.

Keywords

Super-austenitic stainless steel Dynamic recrystallization Adiabatic heating Coincident site lattice boundary Hot deformation 

Notes

Acknowledgements

The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China (U1460204, U1660117).

References

  1. [1]
    A. Mirzaei, A. Zarei-Hanzaki, N. Haghdadi, A. Marandi, Mater. Sci. Eng. A 589 (2014) 76–82.CrossRefGoogle Scholar
  2. [2]
    E.X. Pu, H. Feng, M. Liu, W.J. Zheng, H. Dong, Z.G. Song, J. Iron Steel Res. Int. 23 (2016) 178–184.CrossRefGoogle Scholar
  3. [3]
    G.R. Ebrahimi, H. Keshmiri, A. Momeni, M. Mazinani, Mater. Sci. Eng. A 528 (2011) 7488–7493.CrossRefGoogle Scholar
  4. [4]
    Y. Han, H. Wu, W. Zhang, D.N. Zou, G.W. Liu, G.J. Qiao, Mater. Des. 69 (2015) 230–240.CrossRefGoogle Scholar
  5. [5]
    K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.CrossRefGoogle Scholar
  6. [6]
    M. Ma, H. Ding, Z.Y. Tang, J.W. Zhao, Z.H. Jiang, G.W. Fan, J. Iron Steel Res. Int. 23 (2016) 244–252.CrossRefGoogle Scholar
  7. [7]
    R.E. Schramm, R.P. Reed, Metall. Trans. A 6 (1975) 1345–1351.CrossRefGoogle Scholar
  8. [8]
    H. Li, S. Yang, S. Zhang, B. Zhang, Z. Jiang, H. Feng, P. Han, J. Li, Mater. Des. 118 (2017) 207–217.CrossRefGoogle Scholar
  9. [9]
    H.Y. Sun, Z.J. Zhou, M. Wang, X. Li, J. Iron Steel Res. Int. 21 (2014) 109–115.CrossRefGoogle Scholar
  10. [10]
    F.H. Abed, G.Z. Voyiadjis, Int. J. Plast. 21 (2005) 1618–1639.CrossRefGoogle Scholar
  11. [11]
    J. Zhang, H. Di, X. Wang, Y. Cao, J. Zhang, T. Ma, Mater. Des. 44 (2013) 354–364.CrossRefGoogle Scholar
  12. [12]
    M. Xu, Z.L. Mi, H. Li, D. Tang, H.T. Jiang, Mater. Sci. Technol. 34 (2018) 242–251.CrossRefGoogle Scholar
  13. [13]
    Y.S. Hao, W.C. Liu, Z.Y. Liu, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 401–414.CrossRefGoogle Scholar
  14. [14]
    Y.L. Song, C.S. Li, B.Z. Li, Y.H. Han, Mater. Sci. Technol. 34 (2018) 1639–1648.CrossRefGoogle Scholar
  15. [15]
    Y.S. Hao, W.C. Liu, J. Li, B.X. Nie, W.N. Zhang, Z.Y. Liu, Mater. Sci. Eng. A 736 (2018) 258–268.CrossRefGoogle Scholar
  16. [16]
    X. Wang, E. Brünger, G. Gottstein, Scripta Mater. 46 (2002) 875–880.CrossRefGoogle Scholar
  17. [17]
    Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.Y. Ma, R.D.K. Misra, Mater. Sci. Eng. A 585 (2013) 71–85.CrossRefGoogle Scholar
  18. [18]
    D.G. Brandon, Acta Metall. 14 (1966) 1479–1484.CrossRefGoogle Scholar
  19. [19]
    J. Zhang, H. Di, X. Wang, Mater. Sci. Eng. A 650 (2016) 483–491.CrossRefGoogle Scholar
  20. [20]
    K.A. Babu, Y.H. Mozumder, R. Saha, V.S. Sarma, S. Mandal, Mater. Sci. Eng. A 734 (2018) 269–280.CrossRefGoogle Scholar
  21. [21]
    J. Castellanos, I. Rieiro, M. Carsí, J. Muñoz, M. El Mehtedi, O.A. Ruano, Mater. Sci. Eng. A 517 (2009) 191–196.CrossRefGoogle Scholar
  22. [22]
    D. Ponge, G. Gottstein, Acta Mater. 46 (1998) 69–80.CrossRefGoogle Scholar
  23. [23]
    D.N. Zou, R. Liu, Y. Han, W. Zhang, K. Wu, X.H. Liu, Mater. Sci. Technol. 30 (2013) 411–417.CrossRefGoogle Scholar
  24. [24]
    M.C. Mataya, E.L. Brown, M.P. Riendeau, Metall. Trans. A 21 (1990) 1969–1987.CrossRefGoogle Scholar
  25. [25]
    S. Wang, M. Zhang, H. Wu, B. Yang, Mater. Charact. 118 (2016) 92–101.CrossRefGoogle Scholar
  26. [26]
    T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.CrossRefGoogle Scholar
  27. [27]
    H. Dehghan, S.M. Abbasi, A. Momeni, A.K. Taheri, J. Alloy. Compd. 564 (2013) 13–19.CrossRefGoogle Scholar
  28. [28]
    Q.X. Dai, A.D. Wang, X.N. Cheng, J. Iron Steel Res. 14 (2002) No. 4, 34–37.Google Scholar
  29. [29]
    D.E. Stegall, M.A. Mamun, A.A. Elmustafa, MRS Proc. 1424 (2012) 7–12.Google Scholar
  30. [30]
    H. Beladi, P. Cizek, P.D. Hodgson, Metall. Mater. Trans. A 40 (2009) 1175–1189.CrossRefGoogle Scholar
  31. [31]
    V. Randle, G. Owen, Acta Mater. 54 (2006) 1777–1783.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.State Key Lab for Rolling Technologies and AutomationNortheastern UniversityShenyangChina

Personalised recommendations