Phase-field method for growth of iron whiskers in the presence of CO gas convection

  • Feng Lu
  • Liang-ying WenEmail author
  • Xu Han
  • Wen-huan Jiang
  • Hua-mei Duan
  • Jian Xu
  • Sheng-fu Zhang
Original Paper


A phase-field model for growth of iron whiskers that includes convection around a particle was investigated during the process of fluidized pre-reduction. In the simulations, the phase-field method was coupled with flow field and reduction of iron oxide particles. The results showed that the reduction rate at local place had significant effects on the iron ions diffusion and the iron whiskers were more easily grown on the area containing low mole fraction of oxygen. The growth of iron whiskers in the model was investigated in two important simple situations: a velocity change flow and a CO concentration change flow. Because of high reduction rate and low surface energy, iron whiskers were more easily grown on the windward surface and the length of iron whiskers increased with gas velocity increasing. However, both the length and numbers of iron whiskers increased with CO concentration increasing due to the more nucleation site of iron whiskers created by CO adsorbed. When the gas velocity is higher than 0.3 m/s or CO mole fraction is high than 0.6, the nucleation incubation time would be rapidly decreased, which could give suggestions to control the operational parameters in the fluidized pre-reduction process.


Iron whisker Reduction Convection Phase-field method 



This work is supported by the National Natural Science Foundation of China (51374263, 51674052). The authors are grateful for the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0003), and National Natural Science Foundation of China (91634106, 51704048) is also acknowledged.


  1. [1]
    J.L. Schenk, Particuology 9 (2011) 14–23.CrossRefGoogle Scholar
  2. [2]
    Y.H. Qi, H.C. Xu, J. Iron Steel Res. 8 (1996) No. 5, 7–11.Google Scholar
  3. [3]
    R. Degel, Sticking and its solution in the gaseous reduction of iron ore, IEHK, RWTH Aachen University, Germany, 1996.Google Scholar
  4. [4]
    M. Komatina, H.W. Gudenau, Metalurgija 10 (2004) 309–328.CrossRefGoogle Scholar
  5. [5]
    Z.L. Zhao, H.Q. Tang, Z.C. Guo, J. Iron Steel Res. 24 (2012) No. 11, 26–28.CrossRefGoogle Scholar
  6. [6]
    Y. Iguchi, Y. Uyeda, K. Goto, S. Hayashi, Oxid. Met. 42 (1994) 103–108.Google Scholar
  7. [7]
    T. Hidayat, D. Shishin, E. Jak, S.A. Decterov, Calphad 48 (2015) 131–144.CrossRefGoogle Scholar
  8. [8]
    B. Sundman, J. Phase Equilibria 12 (1991) 127–140.CrossRefGoogle Scholar
  9. [9]
    X. Gong, B. Zhang, Z. Wang, Z. Guo, Metall. Mater. Trans. B 45 (2014) 2050–2056.CrossRefGoogle Scholar
  10. [10]
    A.A. El-Geassy, M.I. Nasr, M.M. Hessien, ISIJ Int. 36 (1996) 640–649.CrossRefGoogle Scholar
  11. [11]
    L. Yi, Z. Huang, T. Jiang, L. Wang, T. Qi, Powder Technol. 269 (2015) 290–295.CrossRefGoogle Scholar
  12. [12]
    S. Sayama, Y. Ueda, S. Yokoyama, Tetsu-to-Hagane 61 (1975) 2160–2166.CrossRefGoogle Scholar
  13. [13]
    H. Wang, H.Y. Sohn, ISIJ. Int. 51 (2011) 906–912.CrossRefGoogle Scholar
  14. [14]
    C. Beckermann, H.J. Diepers, I. Steinbach, A. Karma, X. Tong, J. Comput. Phys. 154 (1999) 468–496.CrossRefGoogle Scholar
  15. [15]
    Y. Lu, C. Beckermann, J.C. Ramirez, J. Crystal Growth 280 (2005) 320–334.CrossRefGoogle Scholar
  16. [16]
    R. Rojas, T. Takaki, M. Ohno, J. Comput. Phys. 298 (2015) 29–40.MathSciNetCrossRefGoogle Scholar
  17. [17]
    R. Tönhardt, G. Amberg, J. Crystal Growth 194 (1998) 406–425.CrossRefGoogle Scholar
  18. [18]
    D.F.M. Vasconcelos, A.L. Rossa, A.L.G.A. Coutinho, Int. J. Numer. Methods Fluids, 75 (2014) 645–667.CrossRefGoogle Scholar
  19. [19]
    F. Lu, L. Wen, J. Li, J. Wei, J. Xu, S. Zhang, Comput. Mater. Sci. 125 (2016) 263–270.CrossRefGoogle Scholar
  20. [20]
    R. Kobayashi, Physica D 63 (1993) 410–423.CrossRefGoogle Scholar
  21. [21]
    R. Kobayashi, Experim. Math. 3 (1994) 59–81.CrossRefGoogle Scholar
  22. [22]
    H. Zhong, L. Wen, C. Zou, S. Zhang, C. Bai, Metall. Mater. Trans. B 46 (2015) 2288–2295.CrossRefGoogle Scholar
  23. [23]
    H. Zhong, L. Wen, J. Li, J. Xu, M. Hu, Z. Yang, Powder Technol. 303 (2016) 100–108.CrossRefGoogle Scholar
  24. [24]
    M.I. Nasr, A.A. Omar, M.H. Khedr, A.A. El-Geassy, ISIJ Int. 35 (1995) 1043–1049.CrossRefGoogle Scholar
  25. [25]
    X. Huang, Ferrous metallurgy theory, Metallurgical Industry Press, Beijing, 2008.Google Scholar
  26. [26]
    J. Li, Study on mechanism and process of direct reduction of pellets made from concentrate and composite binder, Central South University, Changsha, China, 2007.Google Scholar
  27. [27]
    L.Y. Liang, G.H. Lü, Acta Phys. Sin. 62 (2013) 182801.Google Scholar
  28. [28]
    H. Mehrer, Diffusion in solids, Springer Berlin Heidelberg, New York, 2007.CrossRefGoogle Scholar
  29. [29]
    T. Mikami, H. Kamiya, M. Horio, Powder Technol. 89 (1996) 231–238.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  • Feng Lu
    • 1
    • 2
  • Liang-ying Wen
    • 1
    • 2
    Email author
  • Xu Han
    • 1
    • 2
  • Wen-huan Jiang
    • 1
    • 2
  • Hua-mei Duan
    • 1
    • 2
  • Jian Xu
    • 1
    • 2
  • Sheng-fu Zhang
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Chongqing Key Laboratory of Vanadium–Titanium Metallurgy and Advanced MaterialsChongqing UniversityChongqingChina

Personalised recommendations