Journal of Iron and Steel Research International

, Volume 25, Issue 12, pp 1255–1264 | Cite as

Improved hydrogen storage performance of as-milled Sm–Mg–Ni alloy by adding CeO2

  • Yang-huan ZhangEmail author
  • Kai-feng Zhang
  • Ze-ming Yuan
  • Ya-qin Li
  • Hong-wei Shang
  • Yan Qi
  • Xiao-ping Dong
  • Dong-liang Zhao
Original Paper


To investigate the influence of adding CeO2 on the hydrogen storage characteristics of Sm–Mg–Ni-based SmMg11Ni-type alloy, mechanical milling was utilized to synthesize SmMg11Ni and SmMg11Ni + 5 wt.% CeO2 (named SmMg11Ni–5CeO2) alloys. The microstructure of as-cast and as-milled samples was measured via X-ray diffractometer and transmission electron microscope. Sieverts device was utilized to measure the isothermal hydriding and dehydriding kinetics. The non-isothermal dehydrogenation performance was explored by thermogravimetry and differential scanning calorimetry. The hydrogen desorption activation energy of the compound metal hydride can be computed by both Arrhenius and Kissinger methods. The related data show that adding CeO2 can engender a very slight influence on the hydrogen storage thermodynamics, but it can result in an obvious reduction in hydrogen absorption and desorption capacities. Furthermore, the hydrogen desorption performance of experimental alloys is conspicuously ameliorated by the addition of CeO2, viz. lowering the initial hydrogen desorption temperature and enhancing hydrogen desorption rate. The hydrogen desorption activation energies with and without CeO2 addition are 84.28 and 100.31 kJ/mol, respectively, with an obvious decrease of 16.03 kJ/mol. This is thought to be responsible for the ameliorated hydrogen desorption kinetics by adding CeO2.


Mg-based alloy Mechanical milling Activation energy Catalysis Hydrogen storage kinetics 



The authors would like to acknowledge the National Natural Science Foundation of China (Grant Nos. 51761032, 51471054 and 51871125) for giving financial support to this work.


  1. [1]
    F. Hu, Y.H. Zhang, Y. Zhang, J.Y. Xu, Y. Cai, L.B. Deng, Int. J. Mater. Res. 105 (2014) 39–43.CrossRefGoogle Scholar
  2. [2]
    Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, Y.H. Zhang, Int. J. Hydrogen Energy 41 (2016) 5994–6003.CrossRefGoogle Scholar
  3. [3]
    M.U. Niemann, S.S. Srinivasan, A. Kumar, E.K. Stefanakos, D.Y. Goswami, K. McGrath, Int. J. Hydrogen Energy 34 (2009) 8086–8093.CrossRefGoogle Scholar
  4. [4]
    D. Mori, K. Hirose, Int. J. Hydrogen Energy 34 (2009) 4569–4574.CrossRefGoogle Scholar
  5. [5]
    V. Bhat, A. Rougier, L. Aymard, G.A. Nazri, J.M. Tarascon, Int. J. Hydrogen Energy 32 (2007) 4900–4906.CrossRefGoogle Scholar
  6. [6]
    M. Anik, F. Karanfil, N. Küçükdeveci, Int. J. Hydrogen Energy 37 (2012) 299–308.CrossRefGoogle Scholar
  7. [7]
    Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 22 (2015) 757–770.CrossRefGoogle Scholar
  8. [8]
    L. Shaw, J. Pratt, L. Klebanoff, T. Johnson, M. Arienti, M. Moreno, Int. J. Hydrogen Energy 38 (2013) 2810–2823.CrossRefGoogle Scholar
  9. [9]
    D.R. Leiva, D. Fruchart, M. Bacia, G. Girard, N. Skryabina, A.C.S. Villela, S. Miraglia, D.S. Santos, W.J. Botta, Int. J. Mater. Res. 100 (2009) 1739–1746.CrossRefGoogle Scholar
  10. [10]
    Y.H. Zhang, T. Yang, T.T. Zhai, Z.M. Yuan, X.P. Dong, D.L. Zhao, Int. J. Mater. Res. 105 (2014) 1159–1165.CrossRefGoogle Scholar
  11. [11]
    M. Suleiman, D. Fritsch, C. Borchers, M. Guerdane, A. Pundt, Int. J. Mater. Res. 99 (2008) 528–534.CrossRefGoogle Scholar
  12. [12]
    J.X. Zou, X.Q. Zeng, Y.J. Ying, X. Chen, H. Guo, S. Zhou, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 2337–2346.CrossRefGoogle Scholar
  13. [13]
    J.L. Bobet, E. Grigorova, M. Khrussanova, M. Khristov, P. Stefanov, P. Peshev, D. Radev, J. Alloy. Compd. 366 (2004) 298–302.CrossRefGoogle Scholar
  14. [14]
    S. Long, J.X. Zou, X. Chen, X.Q. Zeng, W.J. Ding, J. Alloy. Compd. 615 (2014) S684-S688.CrossRefGoogle Scholar
  15. [15]
    S.H. Lee, Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 39 (2014) 16486–16492.CrossRefGoogle Scholar
  16. [16]
    I.E. Malka, M. Pisarek, T. Czujko, J. Bystrzycki, Int. J. Hydrogen Energy 36 (2011) 12909–12917.CrossRefGoogle Scholar
  17. [17]
    F.P. Luo, H. Wang, L.Z. Ouyang, M.Q. Zeng, J.W. Liu, M. Zhu, Int. J. Hydrogen Energy 38 (2013) 10912–10918.CrossRefGoogle Scholar
  18. [18]
    D. Pukazhselvan, G. Capurso, A. Maddalena, S.L. Russo, D.P. Fagg, Int. J. Hydrogen Energy 39 (2014) 20045–20053.CrossRefGoogle Scholar
  19. [19]
    H.Y. Zhou, X.X. Lan, Z.M. Wang, Q.R. Yao, C.Y. Ni, W.P. Liu, Int. J. Hydrogen Energy 37 (2012) 13178–13184.CrossRefGoogle Scholar
  20. [20]
    E.A. Lass, Int. J. Hydrogen Energy 36 (2011) 10787–10796.CrossRefGoogle Scholar
  21. [21]
    Y.H. Zhang, Z.H. Hou, Y. Cai, H.W. Shang, Y. Qi, D.L. Zhao, J. Iron Steel Res. Int. 24 (2017) 296–305.CrossRefGoogle Scholar
  22. [22]
    M. Daryani, A. Simchi, M. Sadati, H.M. Hosseini, H. Targholizadeh, M. Khakbiz, Int. J. Hydrogen Energy 39 (2014) 21007–21014.CrossRefGoogle Scholar
  23. [23]
    T. Sadhasivam, M.S.L. Hudson, S.K. Pandey, A. Bhatnagar, M.K. Singh, K. Gurunathan, O.N. Srivastava, Int. J. Hydrogen Energy 38 (2013) 7353–7362.CrossRefGoogle Scholar
  24. [24]
    M.S. El-Eskandarany, E. Shaban, A. Al-Shemmiri, Int. J. Hydrogen Energy 39 (2014) 21097–21106.CrossRefGoogle Scholar
  25. [25]
    S. Agarwal, A. Jain, P. Jain, M. Jangir, D. Vyas, I.P. Jain, J. Alloy. Compd. 645 (2015) S518-S523.CrossRefGoogle Scholar
  26. [26]
    Y.H. Zhang, Z.M. Yuan, T. Yang, D.C. Feng, Y. Cai, D.L. Zhao, J. Alloy. Compd. 688 (2016) 585–593.CrossRefGoogle Scholar
  27. [27]
    Y.H. Zhang, B.W. Li, H.P. Ren, T. Yang, S.H. Guo, Y. Qi, D.L. Zhao, J. Mater. Sci. Technol. 32 (2016) 218–225.CrossRefGoogle Scholar
  28. [28]
    Y.H. Zhang, Z.M. Yuan, W.G. Bu, F. Hu, Y. Cai, D.L. Zhao, Acta Metall. Sin. (Engl. Lett.) 29 (2016) 577–586.Google Scholar
  29. [29]
    Rafi-ud-din, X.H. Qu, G.H. Zahid, Z. Asghar, M. Shahzad, M. Iqbal, E. Ahmad, J. Alloy. Compd. 604 (2014) 317–324.CrossRefGoogle Scholar
  30. [30]
    Y.H. Zhang, Z.C. Jia, Z.M. Yuan, Y. Qi, Z.H. Hou, D.L. Zhao, Int. J. Mater. Res. 107 (2016) 348–355.CrossRefGoogle Scholar
  31. [31]
    J.X. Zou, H. Guo, X.Q. Zeng, S. Zhou, X. Chen, W.J. Ding, Int. J. Hydrogen Energy 38 (2013) 8852–8862.CrossRefGoogle Scholar
  32. [32]
    S. Cheung, W.Q. Deng, A.C. T. van Duin, W.A. Goddard, J. Phys. Chem. A 109 (2005) 851–859.CrossRefGoogle Scholar
  33. [33]
    M. Paskevicius, D.A. Sheppard, C.E. Buckley, JACS 132 (2010) 5077–5083.CrossRefGoogle Scholar
  34. [34]
    B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Int. J. Hydrogen Energy 32 (2007) 1121–1140.CrossRefGoogle Scholar
  35. [35]
    N.S. Mustafa, M. Ismail, Int. J. Hydrogen Energy 39 (2014) 15563–15569.CrossRefGoogle Scholar
  36. [36]
    Y.H. Zhang, S.S. Cui, X.P. Song, P.L. Zhang, Y.G. Zhu, Y. Cai, Int. J. Mater. Res. 107 (2016) 605–614.CrossRefGoogle Scholar
  37. [37]
    T. Czujko, R.A. Varin, C. Chiu, Z. Wronski, J. Alloy. Compd. 414 (2006) 240–247.CrossRefGoogle Scholar
  38. [38]
    T. Kimura, H. Miyaoka, T. Ichikawa, Y. Kojima, Int. J. Hydrogen Energy 38 (2013) 13728–13733.CrossRefGoogle Scholar
  39. [39]
    J.F. Mao, Z.P. Guo, X.B. Yu, H.K. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy 35 (2010) 4569–4575.CrossRefGoogle Scholar
  40. [40]
    H.E. Kissinger, Anal. Chem. 29 (1957) 1702–1706.CrossRefGoogle Scholar
  41. [41]
    H.J. Lin, C. Zhang, H. Wang, L.Z. Ouyang, Y.F. Zhu, L.Q. Li, W.H. Wang, M. Zhu, J. Alloy. Compd. 685 (2016) 272–277.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Yang-huan Zhang
    • 1
    • 2
    Email author
  • Kai-feng Zhang
    • 1
    • 2
  • Ze-ming Yuan
    • 1
    • 2
  • Ya-qin Li
    • 2
  • Hong-wei Shang
    • 2
  • Yan Qi
    • 2
  • Xiao-ping Dong
    • 3
  • Dong-liang Zhao
    • 2
  1. 1.Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal ResourcesInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.Department of Functional Material ResearchCentral Iron and Steel Research InstituteBeijingChina
  3. 3.Department of Mechanical EngineeringHebei UniversityBaodingChina

Personalised recommendations