Advertisement

Reduction of chromium ore by recycled silicon cutting sludge waste with carbon addition

  • Woo-gwang JungEmail author
  • Sakib Tanvir Hossain
  • Fatima Tuz Johra
  • Jong-ho Kim
  • Young-chul Chang
Original Paper
  • 12 Downloads

Abstract

A basic study on the feasibility of producing ferrochrome (silicon) alloys using Si sludge waste collected from the silicon ingot cutting process was carried out, and the effects of the addition of carbon components, reaction time, and reaction temperature on the silicothermic reduction of chromium ore by Si sludge were studied. The cordierite (Mg2Al4Si5O18) phase was generated in the slag, and the Fe–Cr(–Si)–C alloy was formed by the silicothermic reduction. Moreover, the addition of carbon powder lowered the reduction initiating temperature, and the reduction ratio based on the oxygen content was evaluated at around 68–88% at 1573 K, which increased with an increase in carbon. However, it was difficult to find a significant difference in the reduction behavior in response to increasing the holding time. The reduced ferrochrome (Fe–Cr) metal alloy droplets coalesced more intensively with an increase in reduction temperature, and for manufacturing the Fe–Cr alloy, it is estimated that a temperature of 1773 K or higher is required for good separation of the slag and the metal. Furthermore, the metallization ratio was defined, and higher values are evaluated for Fe than for Cr.

Keywords

Chromium ore Ferrochrome alloy Silicon sludge waste Silicothermic reduction Reduction ratio Metallization ratio 

Notes

Acknowledgements

This study was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and funded by the Ministry of Trade, Industry, and Energy (No. 20165020301180) and by the Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.

References

  1. [1]
    K.Y. Park, H.K. Park, B.W. Ko, T.W. Kang, H.D. Jang, Ind. Eng. Chem. Res. 52 (2013) 3943–3946.CrossRefGoogle Scholar
  2. [2]
    C.Y. Shih, S.H. Gau, C.C Kuo, C.Y. Huang, S.W. Kuo, J. Appl. Sci. Eng. 19 (2016) 75–82.Google Scholar
  3. [3]
    T.Y. Wang, Y.C. Lin, C.Y. Tai, C.C. Fei, M.Y. Tseng, C.W. Lan, Prog. Photovolt: Res. Appl. 17 (2009) 155–163.CrossRefGoogle Scholar
  4. [4]
    Y.C. Lin, T.Y. Wang, C.W. Lan, C.Y. Tai, Powder Technol. 200 (2010) 216–223.CrossRefGoogle Scholar
  5. [5]
    J.Y. Kim, U.S. Kim, K.T. Hwang, W.S. Cho, K.J. Kim, J. Korean Ceram. Soc. 48 (2011) 189–194.CrossRefGoogle Scholar
  6. [6]
    Y.C. Lin, C.Y. Tai, Sep. Purif. Technol. 74 (2010) 170–177.CrossRefGoogle Scholar
  7. [7]
    W.F. Smith, Structure and properties of engineering alloys, 2nd ed., B.H. Han Trans., Bando Publishing Inc., Seoul, Korea, 1994.Google Scholar
  8. [8]
    M. Sumitomo, T. Okada, Tekko-to-Goukingenso (I), in: H. Sawamura (Eds.), The 19th Committee on Steelmaking, The Japan Society for the Promotion Science, Seibundoshinkousha, Tokyo, Japan, 1971, pp. 289–345.Google Scholar
  9. [9]
    S.A.C Hockaday, K. Bisaka, in: Proceedings of the Twelfth International Ferroalloys Congress Sustainable Future, Helsinki, Finland, 2010, pp. 367–376.Google Scholar
  10. [10]
    S. Agarwal, J. Pal, D. Ghosh, Ironmak. Steelmak. 43 (2016) 97–111.CrossRefGoogle Scholar
  11. [11]
    B. Nandy, M.K. Chaudhury, J. Paul, D. Bhattacharjee, Metall. Mater. Trans. B 40 (2009) 662–675.CrossRefGoogle Scholar
  12. [12]
    C. Ugwuegbu, Innov. Syst. Des. Eng. 3 (2012) 48–54.Google Scholar
  13. [13]
    K.P.D. Perry, C.W.P. Finn, R.P. King, Metall. Trans. B 19 (1988) 677–684.CrossRefGoogle Scholar
  14. [14]
    M.H. Khedr, ISIJ Int. 40 (2000) 309–314.CrossRefGoogle Scholar
  15. [15]
    D. Chakraborty, S. Ranganathan, S.N. Sinha, Metall. Mater. Trans. B 36 (2005) 437–444.CrossRefGoogle Scholar
  16. [16]
    P. Weber, R.H. Eric, Miner. Eng. 19 (2006) 318–324.CrossRefGoogle Scholar
  17. [17]
    G. Kapure, V. Tathavadkar, C.B. Rao, S.M. Rao, K.S. Raju, in: Proceedings of The Twelfth International Ferroalloys Congress Sustainable Future, Helsinki, Finland, 2010, pp. 293–301Google Scholar
  18. [18]
    G.U. Kapure, C.B. Rao, V.D. Tathavadkar, R. Sen, Ironmak. Steelmak. 38 (2011) 590–596.CrossRefGoogle Scholar
  19. [19]
    J.H. Kim, E.J. Jung, G.G. Lee, W.G. Jung, S.J. Yu, Y.C. Chang, Korean J. Mater. Res. 27 (2017) 263–269.Google Scholar
  20. [20]
    W.G. Jung, G.S. Back, F.T. Johra, J.H. Kim, Y.C. Chang, S.J. Yoo, J. Min. Metall. B 54 (2018) 29–37.CrossRefGoogle Scholar
  21. [21]
    Center for Research in Computational Thermochemistry, Montreal, Canada, FactSage 7.0, http://www.factsage.com (2016-10-01).
  22. [22]
    P.W. Han, P.X. Chen, S.J. Chu, L.B. Liu, R. Chen, in: Proceeding of the Fourteenth International Ferroalloys Congress, Infacon XIV, Kiev, Ukraine, 2015, pp. 422–428.Google Scholar
  23. [23]
    JCPDS (International Centre of Diffraction Data) Card No. 22-1107 (1996)Google Scholar
  24. [24]
    V.E. Roshchin, A.V. Roshchin, K.T. Akhmetov, Russian Metall. 2014 (2014) 173–178.CrossRefGoogle Scholar
  25. [25]
    J. Pan, C. Yang, D. Zhu, ISIJ Int. 55 (2015) 727–735.CrossRefGoogle Scholar
  26. [26]
    X. Hu, L.S. Ökvist, Q. Yang, B. Björkman, Ironmak. Steelmak. 42 (2015) 409–416.CrossRefGoogle Scholar
  27. [27]
    Y. Xiao, C. Schuffeneger, M. Reuter, L. Holappa, T. Seppälä, in: Proceeding of Tenth International Ferroalloys Congress, Infacon X, Cape Town, South Africa, 2004, pp. 26–35.Google Scholar
  28. [28]
    A. Atasoy, F.R. Sale, Solid State Phenom. 147-149 (2009) 752–757.CrossRefGoogle Scholar
  29. [29]
    JCPDS (International Centre of Diffraction Data) Card No. 89-1487 (1996)Google Scholar
  30. [30]
    A.P. Zambrano, C. Takano, M.B. Mourao, Y.S. Tagusagawa, Y. Iguchi, ISIJ Int. 51 (2011) 1296–1300.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Woo-gwang Jung
    • 1
    Email author
  • Sakib Tanvir Hossain
    • 2
  • Fatima Tuz Johra
    • 1
  • Jong-ho Kim
    • 3
  • Young-chul Chang
    • 4
  1. 1.School of Materials Science and EngineeringKookmin UniversitySeoulKorea
  2. 2.Department of Materials Science and EngineeringGraduate School of Kookmin UniversitySeoulKorea
  3. 3.Advanced Metals Research GroupResearch Institute of Industrial Science and Technology (RIST)Pohang CityKorea
  4. 4.Department of Mechatronics EngineeringKorea University of Technology and EducationCheonan-siKorea

Personalised recommendations