Advertisement

Mechanisms of ultrafine particle formation during coal combustion in a new swirl modification device

  • Jun-xiang Guo
  • Ling-ling ZhangEmail author
  • Wen-bin Dai
  • Li-ying Qi
  • Ru-fei Wei
  • Da-qiang CangEmail author
Original Paper
  • 62 Downloads

Abstract

A new swirl combustion device was designed and enhanced, which realized the utilization of steel slag, achieved highly efficient and clean coal combustion, and simultaneously realized a fully elemental utilization of coal. The distribution laws of different sized particulate matter (PM) emission and the enrichment laws of elements in particles under diverse conditions (such as various excess air coefficients and different coal ratios) were systematically studied. The enrichments of PM under both non-staged and fuel-staged conditions were also investigated. The results indicated that fuel-staged combustion is more helpful in reducing PM emissions than non-staged combustion, and a suitable coal ratio is also beneficial for reducing PM emissions. The melted liquid steel slag drop captured the fly ash produced from pulverized combustion, thus reducing PM emission. The alkali metal elements (K, Na, and Mg), the trace elements (As and Ti), and S have an obvious enrichment tendency in PM1 and PM2.5. A different coal ratio under fuel-staged combustion has a significant influence on the enrichment of Al, Si, Ca, and Fe in PM1, whereas in PM2.5, PM4, and PM10, the effect of different coal ratios on the enrichment of each element is slight.

Keywords

Coal combustion Steel slag modification Particulate matter Elemental enrichment Fuel-staged feed Non-staged feed Swirl modification device 

Notes

Acknowledgements

The authors are grateful for the Open Project Funding from State Key Laboratory of Solid Waste Reuse for Building Materials (No. SWR-2017-005), and Science and Technology Planning Project of Handan City (No. 1621212047).

References

  1. [1]
    Q. Wang, P. Yan, J. Feng, J. Hazard. Mater. 186 (2011) 1070–1075.CrossRefGoogle Scholar
  2. [2]
    D.Q. Cang, Y. Li, W.B. Dai, Device for online modification of thermal-state smelting slag, China, WO2015131438 A1.Google Scholar
  3. [3]
    G.Z. Zhao, Y. Li, W.B. Dai, D.Q. Cang, Chin. J. Eng. 38 (2016) No. 2, 207–212.Google Scholar
  4. [4]
    D. Peter, E. Andreas, K. Michael, Steel Res. Int. 80 (2010) 737–745.Google Scholar
  5. [5]
    G.Q. Li, H.W. Ni, in: P.T. Jones (Eds.), Proceedings of the Second International Slag Valorisation Symposium, University of Leuven Research Centre, Belgium, 2011, pp. 253–261.Google Scholar
  6. [6]
    X.B. Ai, H. Bai, L.H. Zhao, D.Q. Cang, Q. Tang, Int. J. Miner. Metall. Mater. 20 (2013) 379–385.CrossRefGoogle Scholar
  7. [7]
    J. Gu, H.R. Yuan, T.L. Huhe, X.Q. Ma, Y. Chen, J. Eng. Thermophysics 37 (2016) 2715–2719.Google Scholar
  8. [8]
    B.S. Haynes, M. Neville, R.J. Quann, A.F. Sarofim, J. Colloid Interface Sci. 87 (1982) 266–278.CrossRefGoogle Scholar
  9. [9]
    W.P. Linak, C.A. Miller, W.S. Seames, J.O.L. Wendt, T. Ishinomori, Y. Endo, S. Miyamae, Proc. Combust. Inst. 29 (2002) 441–447.CrossRefGoogle Scholar
  10. [10]
    Z. Xiao, Y. Tang, J. Zhuo, Q. Yao, Fuel 206 (2017) 546–554.CrossRefGoogle Scholar
  11. [11]
    C. Thiel, M. Pohl, S. Grahl, M. Beckmann, Fuel 152 (2015) 88–95.CrossRefGoogle Scholar
  12. [12]
    R.J. Quann, M. Neville, M. Janghorbani, C.A. Mims, A.F. Sarofim, Environ. Sci. Technol. 16 (1982) 776–781.CrossRefGoogle Scholar
  13. [13]
    L. Yan, R. Gupta, T. Wall, Energy Fuels 15 (2001) 389–394.CrossRefGoogle Scholar
  14. [14]
    R.J. Quann, M. Neville, A.F. Sarofim, Combust. Sci. Technol. 74 (1990) 245–265.CrossRefGoogle Scholar
  15. [15]
    D. Yu, M. Xu, H. Yao, J. Sui, X. Liu, Y. Yu, Q. Cao, Proc. Combust. Inst. 31 (2007) 1921–1928.CrossRefGoogle Scholar
  16. [16]
    G. Cheng, P.W. He, B. Xiao, Z.Q. Hu, S.M. Liu, L.G. Zhang, L. Cai, Energy 43 (2012) 329–333.CrossRefGoogle Scholar
  17. [17]
    R.C. Flagan, S.K. Frienlander, Particle formation in pulverized coal combustion a review recent developments in aerosol science, Wiley, New York, 1978.Google Scholar
  18. [18]
    G. Li, S. Li, Q. Huang, Q. Yao, Fuel 143 (2015) 430–437.CrossRefGoogle Scholar
  19. [19]
    Z. Xiao, T. Shang, J. Zhuo, Q. Yao, Fuel 181 (2016) 1257–1264.CrossRefGoogle Scholar
  20. [20]
    V. Branco, M. Costa, Energ. Convers. Manage. 149 (2017) 774–780.Google Scholar
  21. [21]
    J.M. Colom-Díaz, M.U. Alzueta, U. Fernandes, M. Costa, Fuel 207 (2017) 790–800.CrossRefGoogle Scholar
  22. [22]
    B. Wei, X. Wang, H. Tan, L. Zhang, Y. Wang, Z. Wang, Fuel 181 (2016) 1224–1229.CrossRefGoogle Scholar
  23. [23]
    A.R. Ramsden, M. Shibaoka, Atmospheric Environment 16 (1982) 2191-2195, 2197–2206.Google Scholar
  24. [24]
    C. Wen, X. Gao, Y. Yu, J. Wu, M. Xu, H. Wu, Fuel 140 (2015) 526–530.CrossRefGoogle Scholar
  25. [25]
    M. Xu, D. Yu, H. Yao, X. Liu, Y. Qiao, Proc. Combust. Inst. 33 (2011) 1681–1697.CrossRefGoogle Scholar
  26. [26]
    S. Zellagui, G. Trouvé, C. Schönnenbeck, N. Zouaoui-Mahzoul, J.F. Brilhac, Fuel 189 (2017) 358–368.CrossRefGoogle Scholar
  27. [27]
    X. Chen, S.B. Liaw, H. Wu, Combust. Flame 182 (2017) 90–101.CrossRefGoogle Scholar
  28. [28]
    C. Feng, X. Gao, H. Wu, Proc. Combust. Inst. 36 (2017) 4061–4068.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Energy and Environment EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Solid Waste Reuse for Building Materials (SKL-SWR)Beijing Building Materials Academy of Sciences Research (BBMA)BeijingChina
  4. 4.College of Energy and Environmental EngineeringHebei University of EngineeringHandanChina

Personalised recommendations