Journal of Iron and Steel Research International

, Volume 25, Issue 11, pp 1198–1211 | Cite as

Evolution of carbides on surface of carburized M50NiL bearing steel

  • Jiang-long Lian
  • Li-jing ZhengEmail author
  • Fang-fang Wang
  • Hu Zhang
Original Paper


The dissolution and precipitation behaviors of the carbides in carburized M50NiL steel were derived from different solution and tempering treatments. Totally four kinds of carbides of (V, Cr)-rich MC, (Mo, Fe)-rich M2C, Fe-rich M3C and (Fe, Cr)-rich M7C3 were obtained from the carburized M50NiL steel after different heat treatments. The key carbides of carburized M50NiL steel were proved to be tough V-rich MC and Cr-rich M7C3. The highest hardness (634 HV) and the optimal surface structure with 1.0% volume fraction of uniformly distributed MC carbides were obtained after the carburized M50NiL steel was solution-treated at 1150 °C and tempered at 500 °C. The quantitative statistics show that 63% of the MC carbides were less than 200 nm under that heat treatment. The variety of carbides changed with solution and tempering conditions. When the solution temperature increased from 1050 to 1150 °C, the undissolved carbides were proved to be Fe-rich M7C3, Mo-rich MC and (Mo, Fe)-rich M2C. Besides, the equivalent content of V-rich MC was found increased when the tempering temperature changed from 500 to 550 °C. The combination of high-temperature solution and low-temperature tempering is recommendable heat treatment for the high hardness as well as the tiny and uniformly distributed carbides.


M50NiL steel Carbide Carburization Hardness Heat treatment 



The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China under Grant NSFC 51471012.


  1. [1]
    E.N. Bamberger, J.C. Clark Jr, A.H. Nahm, Rolling element bearing member, United States, 4659241, 1987.Google Scholar
  2. [2]
    S. Ooi, H.K.D.H. Bhadeshia, ISIJ Int. 52 (2012) 1927–1934.CrossRefGoogle Scholar
  3. [3]
    S.G. Song, H. Du, E.Y. Sun, Metall. Mater. Trans. A 33 (2002) 1963–1969.CrossRefGoogle Scholar
  4. [4]
    L. Rosado, N.H. Forster, K.L. Thompson, J.W. Cooke, Tribol. Trans. 53 (2009) 29–41.CrossRefGoogle Scholar
  5. [5]
    F.J. Ebert, Chin. J. Aeronaut. 20 (2007) 378–384.CrossRefGoogle Scholar
  6. [6]
    F. Wang, L. Zheng, H. Zhang, Mater. Sci. Technol. 33 (2017) 438–445.CrossRefGoogle Scholar
  7. [7]
    Z.K. Li, J.Z. Lei, H.F. Xu, F. Yu, H. Dong, W.Q. Cao, J. Iron Steel Res. 28 (2016) No. 3, 1–12.Google Scholar
  8. [8]
    M. Rhoads, M. Johnson, K. Miedema, J. Scheetz, J. Williams, in: J.M. Beswick (Eds.), Bearing Steel Technologies: 10th Volume Advances in Steel Technologies for Rolling Bearings, ASTM International, Toronto, 2014, pp. 259–271.Google Scholar
  9. [9]
    Z. Sun, C.S. Zhang, M.F. Yan, Mater. Des. 55 (2014) 128–136.CrossRefGoogle Scholar
  10. [10]
    M.F. Yan, C.S. Zhang, Z. Sun, Appl. Surf. Sci. 289 (2014) 370–377.CrossRefGoogle Scholar
  11. [11]
    X.A. Wang, M.F. Yan, R.L. Liu, Y.X. Zhang, J. Rare Earth 34 (2016) 1148–1155.CrossRefGoogle Scholar
  12. [12]
    L. Insup, Rare Metals 25 (2006) 267–271.CrossRefGoogle Scholar
  13. [13]
    C.S. Zhang, M.F. Yan, Z. Sun, Y.X. Wang, Y. You, B. Bai, L. Chen, Z. Long, R.W. Li, Appl. Surf. Sci. 315 (2014) 28–35.CrossRefGoogle Scholar
  14. [14]
    H.F. Xu, F. Yu, C. Wang, W.L. Zhang, J. Li, W.Q. Cao, J. Iron Steel Res. Int. 24 (2017) 206–213.CrossRefGoogle Scholar
  15. [15]
    A. Bhattacharyya, G. Subhash, N. Arakere, Int. J. Fatigue 59 (2014) 102–113.CrossRefGoogle Scholar
  16. [16]
    Y.H. Wang, Z.N. Yang, F.C. Zhang, D.D. Wu, Mater. Sci. Eng. A 670 (2016) 166–177.CrossRefGoogle Scholar
  17. [17]
    H.S. Hwang, U.C. Chung, W.S. Chung, Y.R. Cho, B.H. Jung, G.P. Martin, Met. Mater. Int. 10 (2004) 77–82.CrossRefGoogle Scholar
  18. [18]
    L.D. Liu, F.S. Chen. Surf. Coat. Technol. 183 (2004) 233–238.CrossRefGoogle Scholar
  19. [19]
    D.W. Hetzner, W.V. Geertruyden, Mater. Charact. 59 (2008) 825–841.CrossRefGoogle Scholar
  20. [20]
    M.A. Klecka, G. Subhash, N.K. Arakere, Tribol. Trans. 56 (2013) 1046–1059.CrossRefGoogle Scholar
  21. [21]
    S.J. Wu, B. Hu, B. Han, Rare Metals 31 (2012) 442–445.CrossRefGoogle Scholar
  22. [22]
    H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57 (2012) 268–435.CrossRefGoogle Scholar
  23. [23]
    J.G. Speer, D.V. Edmonds, F.C. Rizzo, D.K. Matlock, Curr. Opin. Solid State Mater. Sci. 8 (2004) 219–237.CrossRefGoogle Scholar
  24. [24]
    H.K.D.H. Bhadeshia, Mater. Sci. Forum 426–432 (2003) 35–42.CrossRefGoogle Scholar
  25. [25]
    P. Michaud, D. Delagnes, P. Lamesle, M.H. Mathon, C. Levaillant, Acta Mater. 55 (2007) 4877–4889.CrossRefGoogle Scholar
  26. [26]
    T. Wen, X.F. Hu, Y.Y. Song, D.S. Yan, L.J. Rong, Mater. Sci. Eng. A 588 (2013) 201–207.CrossRefGoogle Scholar
  27. [27]
    B. Wang, M.S. Yang, K.Y. Zhao, X.H. Yuan, J. Iron Steel Res. 27 (2015) No. 11, 66–72.Google Scholar
  28. [28]
    F. Ernst, Y. Cao, G.M. Michal, Acta Mater. 52 (2004) 1469–1477.CrossRefGoogle Scholar
  29. [29]
    J. Janovec, M. Svoboda, A. Kroupa, A. Výrostková, J. Mater. Sci. 41 (2006) 3425–3433.CrossRefGoogle Scholar
  30. [30]
    F.M. Liu, J.J. Wang, Y.J. Liu, R.D.K. Misra, C.M. Liu, J. Iron Steel Res. Int. 23 (2016) 559–565.CrossRefGoogle Scholar
  31. [31]
    M. Kang, G. Park, J.G. Jung, B.H. Kim, Y.K. Lee, J. Alloy. Compd. 627 (2015) 359–366.CrossRefGoogle Scholar
  32. [32]
    V. Mohles, D. Rönnpagel, E. Nembach, Comp. Mater. Sci. 16 (1999) 144–150.CrossRefGoogle Scholar
  33. [33]
    V. Mohles, Mater. Sci. Eng. A 309–310 (2001) 265–269.CrossRefGoogle Scholar
  34. [34]
    V. Mohles, B. Fruhstorfer, Acta Mater. 50 (2002) 2503–2516.CrossRefGoogle Scholar
  35. [35]
    I. Hussainova, E. Hamed, I. Jasiuk, Mech. Compos. Mater. 46 (2011) 667–678.CrossRefGoogle Scholar
  36. [36]
    M. Umemoto, K. Tsuchiya, Tetsu-to-Hagané 88 (2002) 117–128.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Jiang-long Lian
    • 1
  • Li-jing Zheng
    • 1
    Email author
  • Fang-fang Wang
    • 1
  • Hu Zhang
    • 1
  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina

Personalised recommendations