Advertisement

Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1010–1016 | Cite as

Cooling phenomena in blast furnace hearth

  • Ke-xin Jiao
  • Jian-liang Zhang
  • Zheng-jian Liu
  • Yong Deng
  • Chun-lin Chen
Original Paper
  • 24 Downloads

Abstract

Cooling water provides the best protection for refractory in the blast furnace hearth. Stable and suitable water quality and abundant cooling water are the basis for long service life of the hearth. Some phenomena about cooling system in the commercial blast furnaces were described, and reasonable explanations of these phenomena were analyzed. The results show that increasing the amount of cooling water and reducing the inlet temperature of cooling water can increase the cooling effect significantly in the case of water scaling. Heat flux in the blast furnace hearth is the average heat flux of cooling stave, and the erosion of carbon brick is uneven. There is no direct connection between the actual erosion condition and the heat flux in the hearth. The change trend of thermocouple temperature and heat flux in the hearth can reflect whether the gaps exist among the bricks or not, providing an effective guidance for industrial production and the evaluation of safety state in the hearth. And, the film boiling will not occur in the normal cooling system in the blast furnace hearth.

Keywords

Blast furnace hearth Cooling system Heat flux Film boiling Scale deposit Air gap 

Notes

Acknowledgements

This work was financially supported by the National Science Foundation for Young Scientists of China (51704019).

References

  1. [1]
    Z.J. Liu, J.L. Zhang, H.B. Zuo, T.J. Yang, ISIJ Int. 52 (2012) 1713–1723.CrossRefGoogle Scholar
  2. [2]
    T. Inada, A. Kasai, K. Nakano, S. Komatsu, A. Ogawa, ISIJ Int. 49 (2009) 470–478.CrossRefGoogle Scholar
  3. [3]
    K.X. Jiao, J.L. Zhang, Z.J. Liu, S.B. Kuang, Y.X. Liu, ISIJ Int. 57 (2017) 48–54.CrossRefGoogle Scholar
  4. [4]
    K.X. Jiao, J.L. Zhang, Z.J. Liu, M. Xu, F. Liu, Int. J. Miner. Metall. Mater. 22 (2015) 1017–1024.CrossRefGoogle Scholar
  5. [5]
    H.B. Zhao, S.S. Cheng, M.G. Zhao, J. Iron Steel Res. Int. 14 (2007) No. 2, 6–12.CrossRefGoogle Scholar
  6. [6]
    X.J. Ning, H.B. Zuo, J.L. Zhang, T.J. Yang, J. Univ. Sci. Technol. Beijing 32 (2012) 179–183.Google Scholar
  7. [7]
    K.X. Jiao, J.L. Zhang, H.B. Zuo, Z.J. Liu, J. Mater. Sci. Eng. B 51 (2015) 143–151.Google Scholar
  8. [8]
    M. Soni, S. Verma, Int. J. Inventive Eng. Sci. 2 (2014) 10–16.Google Scholar
  9. [9]
    L.J. Wu, W.G. Zhou, H.E. Chen, Y.L. Su, X.J. Li, C.Y. Song, Int. J. Adv. Manuf. Technol. 29 (2006) 64–69.CrossRefGoogle Scholar
  10. [10]
    Y.L. Li, S.S. Cheng, C. Chen, J. Iron Steel Res. Int. 22 (2015) 382–390.CrossRefGoogle Scholar
  11. [11]
    G.Y. Kryachko, G.I. Orel, P.A. Vasyuchenko, L.A. Safina, Metallurgist 49 (2005) 424–431.CrossRefGoogle Scholar
  12. [12]
    K.X. Jiao, J.L. Zhang, H.B. Zuo, Y.A. Zhao, J. Northeast. Univ. (Nat. Sci.) 35 (2014) 987–991.Google Scholar
  13. [13]
    J. Li, L.J. Wu, W.G. Zhou, Research on Iron & Steel 37 (2009) No. 1, 12–15.Google Scholar
  14. [14]
    H.B. Zuo, J. Hong, J.L. Zhang, F.G. Li, M. Shen, J.Y. Tie, J. Wuhan Univ. Sci. Technol. 37 (2014) No. 2, 102–105.Google Scholar
  15. [15]
    N.Q. Xie, S.S. Cheng. J. Iron Steel Res. Int. 17 (2010) No. 1, 1–6.CrossRefGoogle Scholar
  16. [16]
    R. Steinhagen, H. Müller-Steinhagen, K. Maani, Heat Transfer Eng. 14 (1993) 19–30.CrossRefGoogle Scholar
  17. [17]
    L. Shi, Y.M. Guo, F.J. Cao, J. Inner Mongolia Univ. 32 (2013) 42-45.Google Scholar
  18. [18]
    Z.P. Zou, X.Z. Guo, China Metallurgy 23 (2013) No. 6, 7–13.Google Scholar
  19. [19]
    J. Merry, J. Sarvinis, N. Voermann, JOM 52 (2000) 62–64.CrossRefGoogle Scholar
  20. [20]
    S.R. Zhang, Z.J. Yu, Long Campaign Life Technologies of BF in WISCO, Beijing, 2010.Google Scholar
  21. [21]
    Z.Y. Xiang, X.L. Wang, BF design—The theory and the practice of ironmaking process, Metallurgical Industry Press, Beijing, 2013, pp. 330.Google Scholar
  22. [22]
    K.X. Jiao, J.L. Zhang, H.B. Zuo, G.Z. Miao, Y.G. Li, China Metallurgy 24 (2014) No. 4, 16–21.Google Scholar
  23. [23]
    K.X. Jiao, J.L. Zhang, H.B. Zuo, Z.J. Liu, in: China’s Steel Annual Meeting, The Chinese Society for Metals, Beijing, 2013, pp. 1–9.Google Scholar
  24. [24]
    H.B. Zhao, S.F. Huo, S.S. Cheng, Int. J. Miner. Metall. Mater. 20 (2013) 345–353.CrossRefGoogle Scholar
  25. [25]
    Z.P. Zou, X.Z. Guo, Iron and Steel 47 (2012) No. 6, 9–13.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Ke-xin Jiao
    • 1
    • 2
  • Jian-liang Zhang
    • 1
    • 3
  • Zheng-jian Liu
    • 1
    • 3
  • Yong Deng
    • 1
    • 3
  • Chun-lin Chen
    • 2
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.CSIRO Mineral ResourcesClayton SouthAustralia
  3. 3.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations