Advertisement

Journal of Iron and Steel Research International

, Volume 25, Issue 10, pp 1068–1077 | Cite as

Microstructure evolution and mechanical properties of 316L austenitic stainless steel with aluminum addition by warm rolling

  • Xin Guo
  • Pei-qing La
  • Heng Li
  • Yu-peng Wei
  • Xue-feng Lu
Original Paper
  • 37 Downloads

Abstract

Microstructure evolution and mechanical properties of 316L austenitic stainless steel with aluminum addition by warm rolling at 550 °C were investigated. It is found that sample is composed of an ashen austenite matrix, a gray black ferrite phase and a small number of NiCx. The average grain sizes are 21.62, 19.66 and 19.49 μm for samples with the rolling deformation of 30%, 50% and 70%, respectively. The yield strength and tensile strength of samples with solid solution time of 30 min and deformation of 70% are higher. The fracture modes are similar and belong to toughness fracture. The fracture surfaces of the samples are composed of relatively large equal-axis ductile dimples (5–15 μm) and fine scattered ones around the dimples (< 5 μm). As the rolling deformation increases, the quantity of subgrain boundary increases and the < 101 > orientation is more prominent. {001} < 110 > rotation-cube textures are present in ferrite phase of samples and weak Goss texture is formed in austenite pole images.

Keywords

AISI 316L austenitic stainless steel Warm rolling Tensile property Fracture mechanism Deformation texture 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51561020), the Gansu Provincial Science and Technology Support Program (1304GKCA027) and the China Postdoctoral Science Foundation (2015M572615, 2016T90959).

References

  1. [1]
    L. Kuncicka, R. Kocich, T.C. Lowe, Prog. Mater. Sci. 88 (2017) 232–280.CrossRefGoogle Scholar
  2. [2]
    F.L. Xu, J.Z. Duan, C.G. Lin, B.R. Hou, J. Iron Steel Res. Int. 22 (2015) 715–720.CrossRefGoogle Scholar
  3. [3]
    M. Mirzaei, M.H. Paydar, Mater. Des. 121 (2017) 442–449.CrossRefGoogle Scholar
  4. [4]
    Z.G. Song, H. Feng, S.M. Hu, J. Iron Steel Res. Int. 24 (2017) 121–130.CrossRefGoogle Scholar
  5. [5]
    H.H. Mao, X. Qi, J. Cao, L.C. An, Y.T. Yang, J. Iron Steel Res. Int. 24 (2017) 561–568.CrossRefGoogle Scholar
  6. [6]
    F.K. Yan, G.Z. Liu, N.R. Tao, K. Lu, Acta Mater. 60 (2012) 1059–1071.CrossRefGoogle Scholar
  7. [7]
    S.G. Chowdhury, R. Singh, Scripta Mater. 58 (2008) 1102–1105.CrossRefGoogle Scholar
  8. [8]
    Q. Yu, C.F. Dong, J.X. Liang, Z.B. Liu, K. Xiao, X.G. Li, J. Iron Steel Res. Int. 24 (2017) 282–289.CrossRefGoogle Scholar
  9. [9]
    M. Martin, S. Weber, W. Theisen, T. Michler, J. Naumann, Int. J. Hydrogen Energ. 38 (2013) 5989–6001.CrossRefGoogle Scholar
  10. [10]
    T. Michler, J. Naumann, S. Weber, M. Martin, R. Pargeter, Int. J. Hydrogen Energ. 38 (2013) 9935–9941.CrossRefGoogle Scholar
  11. [11]
    L.H. Cao, C.J. Liu, Q. Zhao, M.F. Jiang, J. Iron Steel Res. Int. 24 (2017) 258–265.CrossRefGoogle Scholar
  12. [12]
    K. Kondo, Y. Miwa, N. Okubo, Y. Kaji, T. Tsukada, J. Nucl. Mater. 417 (2011) 892–895.CrossRefGoogle Scholar
  13. [13]
    S.G. Chowdhury, S. Das, P.K. De, Acta Mater. 53 (2005) 3951–3959.CrossRefGoogle Scholar
  14. [14]
    M. Odnobokova, A. Belyakov, R. Kaibyshev, Metals 5 (2015) 656–668.CrossRefGoogle Scholar
  15. [15]
    X.J. Shen, S. Tang, Y.J. Wu, X.L. Yang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Sci. Eng. A 685 (2017) 194–204.CrossRefGoogle Scholar
  16. [16]
    Z. Yanushkevich, A. Lugovskaya, A. Belyakov, R. Kaibyshev, Mater. Sci. Eng. A 667 (2016) 279–285.CrossRefGoogle Scholar
  17. [17]
    J.W. Park, J.W. Kim, Y.H. Chung, Scripta Mater. 51 (2004) 181–184.CrossRefGoogle Scholar
  18. [18]
    X.J. Shen, S. Tang, J. Chen, Z.Y. Liu, R.D.K. Misra, G.D. Wang, Mater. Des. 113 (2017) 137–141.CrossRefGoogle Scholar
  19. [19]
    M.P. Brady, Y. Yamamoto, M.L. Santella, L.R. Walker, Oxid. Met. 72 (2009) 311–333.CrossRefGoogle Scholar
  20. [20]
    U. Mizutani, H. Sato, M. Inukai, E.S. Zijlstra, Acta Phys. Pol. A 126 (2014) 531–534.CrossRefGoogle Scholar
  21. [21]
    M. Nezakat, H. Akhiani, M. Hoseini, J. Szpunar, Mater. Charact. 98 (2014) 10–17.CrossRefGoogle Scholar
  22. [22]
    P. Behjati, A. Kermanpur, L.P. Karjalainen, A. Jarvenpaa, M. Jaskari, H.S. Baghbadorani, A. Najafizadeh, A. Hamada, Mater. Sci. Eng. A 650 (2016) 119–128.CrossRefGoogle Scholar
  23. [23]
    M. Gzyl, R. Pesci, A. Rosochowski, S. Boczkal, L. Olejnik, J. Mater. Sci. 50 (2015) 2532–2543.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Xin Guo
    • 1
    • 2
  • Pei-qing La
    • 1
    • 2
  • Heng Li
    • 1
  • Yu-peng Wei
    • 1
  • Xue-feng Lu
    • 2
  1. 1.State Key Laboratory of Advanced Processing and Recycling of Non-ferrous MetalLanzhou University of TechnologyLanzhouChina
  2. 2.Key Laboratory of Nonferrous Metal Alloys and ProcessingMinistry of Education, Lanzhou University of TechnologyLanzhouChina

Personalised recommendations