Solidification structure refinement of ferritic stainless steel based on heterogeneous nucleation technology

  • Xiao-fang ShiEmail author
  • Li-zhong ChangEmail author
  • Li Zhou
Original Paper


The ridging defect on the surface of stainless steel products is related to the solidification structure of ferritic stainless steel. Refining the solidification structure and increasing the proportion of equiaxed grains are necessary to lessen the ridging defect. Therefore, a new idea of using a heterogeneous nucleating agent which was composed of the composite core containing Ti was proposed, that is, a large amount of dispersed fine particles were initially formed on the solidification front, and a great amount of δ iron was then nucleated using these fine particles as the heterogeneous cores. Through analyzing the crystallographic relationship between different crystals and inducing the calculation formulas of disregistry, the disregistry between the different oxides and TiN and δ iron was explored and the type of nucleation core was determined. The key parameters of forming the composite core containing Ti were obtained through a thermodynamic calculation. The experimental results further confirm the correctness of the theoretical analysis.


Ferritic stainless steel Structure refinement Disregistry Heterogeneous nucleation Thermodynamics Solidification 



This study is financially supported by National Natural Science Foundation of China (Grant Nos. 51504001 and 51574001).


  1. [1]
    K.M. Lee, J. Park, S. Kim, S. Park, M.Y. Huh, Microsc. Microanal. 19 (2013) 17–20.CrossRefGoogle Scholar
  2. [2]
    J. Mola, I. Jung, J. Park, D. Chae, B.C. de Cooman, Metall. Mater. Trans. A 43 (2012) 228–244.CrossRefGoogle Scholar
  3. [3]
    Y. Yazawa, O. Furukimi, Y. Ozaki, Y. Kato, M. Muraki, Ferritic stainless steel sheet having excellent deep drawability and production method therefor, JP patent, No. 20010334176, 2001.Google Scholar
  4. [4]
    X.G. Ma, J.W. Zhao, W. Du, X. Zhang, L.Z. Jiang, Z.Y. Jiang, Mater. Sci. Eng. A 685 (2017) 358–366.CrossRefGoogle Scholar
  5. [5]
    S. Patra, A. Ghosh, J. Sood, L.K. Singhal, A.S. Podder, D. Chakrabarti, Mater. Des. 106 (2016) 336–348.CrossRefGoogle Scholar
  6. [6]
    Z. Fang, J.Y. Li, Y.L. Chen, L.Z. Jiang, W. Du, Acta Metall. Sin. 52 (2016) 33–40.Google Scholar
  7. [7]
    A. Hunter, M. Ferry, Metall. Mater. Trans. A. 33 (2002) 1499–1507.CrossRefGoogle Scholar
  8. [8]
    H. Tomimura, Y. Kunitake, N. Hiramatsu, Ferritic stainless steel plate with good deep drawability and workability, JP patent, No. 20010365006, 2001.Google Scholar
  9. [9]
    J.C. Villafuerte, E. Pardo, H.W. Kerr, Metall. Trans. A 21 (1990) 2009–2019.CrossRefGoogle Scholar
  10. [10]
    D.C. Willingham, N. Bailey, Weld. Res. Int. 7 (1977) 28–45.Google Scholar
  11. [11]
    Y.J. Yang, Wide and Heavy Plate 12 (2006) No. 6, 29–31.Google Scholar
  12. [12]
    H.T. Liu, W. Du, S.T. Xie, Z.Y. Liu, G.D. Wang, Chin. J. Mater. Res. 22 (2008) 467–472.Google Scholar
  13. [13]
    W. Du, L.Z. Jiang, Q.S. Sun, H.F. Yu, Z.Y. Liu, Baosteel Technology (2010) No. 2, 25–29.Google Scholar
  14. [14]
    X.B. Li, Y. Min, Z. Yu, C.J. Liu, M.F. Jiang, J. Iron Steel Res. Int. 23 (2016) 415–421.CrossRefGoogle Scholar
  15. [15]
    F. Chai, H. Su, C.F. Yang, D.M. Xue, J. Iron Steel Res. Int. 21 (2014) 369–374.CrossRefGoogle Scholar
  16. [16]
    T. Ganaha, B.P. Pearce, H.W. Kerr, Metall. Trans. A 11 (1980) 1351–1359.CrossRefGoogle Scholar
  17. [17]
    B.P. Pearce, H.W. Kerr, Metall. Trans. B 12 (1981) 479–486.CrossRefGoogle Scholar
  18. [18]
    G.N. Heintze, R. McPherson, Weld J. 65 (1986) 71s–82s.Google Scholar
  19. [19]
    J. Han, H.G. Zheng, D.F. Wu, H.G. Xu, Baosteel Technology (2010) No. 2, 30–34.Google Scholar
  20. [20]
    Y. Itoh, S. Takao, T. Okajima, K. Tashiro, Tetsu-to-Hagané 66 (1980) 710–716.CrossRefGoogle Scholar
  21. [21]
    X.F. Shi, G.G. Cheng, P. Zhao, J. Chin. Soc. Rare Earths 28 (2010) 396–399.Google Scholar
  22. [22]
    C.X. Shi, G.G. Cheng, C.M. Shi, Z.J. Li, P. Zhao, J. Chin. Soc. Rare Earths 24 (2006) 423–426.Google Scholar
  23. [23]
    X.F. Shi, G.G. Cheng, P. Zhao, J. Univ. Sci. Technol. Beijing 32 (2010) 1277–1281.Google Scholar
  24. [24]
    C.X. Shi, G.G. Cheng, Z.J. Li, P. Zhao, J. Iron Steel Res. Int. 15 (2008) No. 3, 57–60.CrossRefGoogle Scholar
  25. [25]
    J.C. Villafuerte, H.W. Kerr, S.A. David, Mater. Sci. Eng. A 194 (1995) 187–191.CrossRefGoogle Scholar
  26. [26]
    D. Turnbull, B. Vonnegut, Ind. Eng. Chem. 44 (1952) 1292–1298.CrossRefGoogle Scholar
  27. [27]
    B.L. Bramfitt, Metall. Trans. 1 (1970) 1987–1995.CrossRefGoogle Scholar
  28. [28]
    Y. Gao, K. Sorimachi, ISIJ Int. 33 (1993) 291–297.CrossRefGoogle Scholar
  29. [29]
    C. Van der Eijk, J. Walmsley, Ø. Grong, in: 6th International Conference on Trends in Welding Research, Georgia, USA, 2002, pp. 730–735.Google Scholar
  30. [30]
    S.C. Park, I.H. Jung, K.S. Oh, H.G. Lee, ISIJ Int. 44 (2004) 1016–1023.CrossRefGoogle Scholar
  31. [31]
    G.V. Pervushin, H. Suito, ISIJ Int. 41 (2001) 728–737.CrossRefGoogle Scholar
  32. [32]
    H. Ohta, H. Suito, ISIJ Int. 46 (2006) 14–21.CrossRefGoogle Scholar
  33. [33]
    H. Ohta, H. Suito, ISIJ Int. 46 (2006) 480–489.CrossRefGoogle Scholar
  34. [34]
    H. Suito, H. Ohta, S. Morioka, ISIJ Int. 46 (2006) 840–846.CrossRefGoogle Scholar
  35. [35]
    Z.P. Chen, Y.T. Xu, M.T. Gong, Y.M. Tian, in: The Seventeenth National Steelmaking Conference of China, The Chinese Society for Metals- Steelmaking Division, Hangzhou, China, 2013, pp. 476–482.Google Scholar
  36. [36]
    Y.T. Xu, Z.P. Chen, M.T. Gong, D. Shu, Y.M. Tian. X.Q. Yuan, J. Iron Steel Res. Int. 21 (2014) 583–588.CrossRefGoogle Scholar
  37. [37]
    T. Kawagoe, T. Yamauchi, N. Hiruhama, I. Noguchi, Production of ferritic stainless steel excellent in ridging resistance, JP patent, No. 19990222036, 1999.Google Scholar
  38. [38]
    L. Liao, R.J. Fruehan, Iron Steelmaker 16 (1989) 91–97.Google Scholar
  39. [39]
    O.J. Jo, J.B. Lee, S.I. Kim, T.I. Chung, W.Y. Kim, J.J. Pak, J.H. Park, D.S. Kim, in: Sohn Int. Symp. Adv. Proc. Metals Mater. Proc. Int. Symp., Minerals, Metals and Materials Society, San Diego, CA, U.S., 2006, pp. 185–198.Google Scholar
  40. [40]
    J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, D.S. Kim, ISIJ Int. 47 (2007) 16–24.CrossRefGoogle Scholar
  41. [41]
    H.Y. Choi, W.E. Slye, R.J. Fruehan, R.C. Nunnington, Metall. Mater. Trans. B 36 (2005) 537–541.CrossRefGoogle Scholar
  42. [42]
    Y. Qu, Physical and chemical calculation of steelmaking process, Metallurgical Industry Press, Beijing, 2010.Google Scholar
  43. [43]
    J.J. Pak, Y.S. Jeong, I.K. Hong, W.Y. Cha, D.S. Kim, Y.Y. Lee, ISIJ Int. 45 (2005) 1106–1111.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.School of Metallurgy EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology)Ministry of EducationMa’anshanChina

Personalised recommendations