Advertisement

Effect of heat input on austenite microstructural evolution of simulated heat affected zone in 2205 duplex stainless steel

  • Tian-hai Wu
  • Jian-jun WangEmail author
  • Hua-bing Li
  • Zhou-hua Jiang
  • Chun-ming Liu
  • Hong-yang Zhang
Original Paper
  • 81 Downloads

Abstract

The effect of simulated welding thermal cycle on the microstructure and impact toughness of heat affected zone (HAZ) in 2205 duplex stainless steel was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy and room temperature impact test. The results show that the morphology and volume fraction of austenite change greatly with heat input. The amount of residual austenite and grain boundary austenite (GBA) decreases while Widmanstätten austenite (WA) laths and intergranular austenite increase with the increase in heat input. Only the fine equiaxed austenite exists in the HAZ when the heat input is increased up to 61.8 kJ/cm. WA laths nucleate initially either at the ferrite and GBA phase boundaries or directly in ferrite grains and begin to decompose into diamond-shaped austenite with the heat input larger than 25.2 kJ/cm. The impact toughness shows a non-monotonic variation, which is related to the increase in austenite fraction and the formation and the decomposition of WA laths.

Keywords

2205 duplex stainless steel Simulated heat affected zone Heat input Widmanstätten austenite Impact toughness 

Notes

Acknowledgements

The authors gratefully appreciate the financial support by the National Natural Science Foundation of China (Grant No. 51471048 and No. U1860201), the Basic Research Program of Key Laboratory of Liaoning Province (LZ2015035) and the Fundamental Research Funds for the Central Universities (N140206001 and L1502045).

References

  1. [1]
    R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, H. Maza, Mater. Charact. 59 (2008) 447–453.CrossRefGoogle Scholar
  2. [2]
    T.A. Palmer, J.W. Elmer, J. Wong, Sci. Technol. Weld. Join. 7 (2002) 159–171.CrossRefGoogle Scholar
  3. [3]
    Z.Q. Wei, X.R. Chen, H.G. Zhong, Q.J. Zhai, G. Wang, J. Iron Steel Res. Int. 24 (2017) 421–425.CrossRefGoogle Scholar
  4. [4]
    P. Li, Y. Zhao, Y.Z. Liu, Y. Zhao, D.K. Xu, C.G. Yang, T. Zhang, T.Y. Gu, K. Yang, J. Mater. Sci. Technol. 33 (2017) 723–727.CrossRefGoogle Scholar
  5. [5]
    A. Dehghan-Manshadi, A. Shokouhi, P.D. Hodgson, Mater. Sci. Eng. A 527 (2010) 6765–6770.CrossRefGoogle Scholar
  6. [6]
    Y.S. Sato, T.W. Nelson, C.J. Sterling, R.J. Steel, C.O. Pettersson, Mater. Sci. Eng. A 397 (2005) 376–384.CrossRefGoogle Scholar
  7. [7]
    Y. Tujikura, S. Urata, Nucl. Eng. Des. 191 (1999) 255–261.CrossRefGoogle Scholar
  8. [8]
    V. Muthupandi, P.B. Srinivasan, V. Shankar, S.K. Seshadri, S. Sundaresan, Mater. Lett. 59 (2005) 2305–2309.CrossRefGoogle Scholar
  9. [9]
    T.H. Chen, J.R. Yang, Mater. Sci. Eng. A 338 (2002) 166–181.CrossRefGoogle Scholar
  10. [10]
    A.J. Ramirez, J.C. Lippold, S.D. Brandi, Metall. Mater. Trans. A 34 (2003) 1575–1597.CrossRefGoogle Scholar
  11. [11]
    J.O. Nilsson, L. Karlsson, J.O. Andersson, Mater. Sci. Technol. 11 (1995) 276–283.CrossRefGoogle Scholar
  12. [12]
    M.A. M, K.A. Shrikrishna, P. Sathiya, S. Goel, J. Manuf. Process. 18 (2015) 92–106.Google Scholar
  13. [13]
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, T.W. Nelson, J. Mater. Sci. Technol. 34 (2018) 39–57.CrossRefGoogle Scholar
  14. [14]
    K. Ravindranath, S.N. Malhotra, Corros. Sci. 37 (1995) 121–129, 131–132.Google Scholar
  15. [15]
    R. Cervo, P. Ferro, A. Tiziani, J. Mater. Sci. 45 (2010) 4369–4377.CrossRefGoogle Scholar
  16. [16]
    S.J. Kim, J.K. Kim, S.H. Park, Scripta Mater. 96 (2015) 33–36.CrossRefGoogle Scholar
  17. [17]
    E. Mortazavi, R.A. Najafabadi, A. Meysami, J. Iron Steel Res. Int. 24 (2017) 1248–1253.CrossRefGoogle Scholar
  18. [18]
    R.I. Hsieh, H.Y. Liou, Y.T. Pan, J. Mater. Eng. Perform. 10 (2001) 526–536.CrossRefGoogle Scholar
  19. [19]
    K. Vijayalakshmi, V. Muthupandi, R. Jayachitra, Mater. Sci. Eng. A 529 (2011) 447–451.CrossRefGoogle Scholar
  20. [20]
    Y.H. Yang, B. Yan, J. Li, J. Wang, Corros. Sci. 53 (2011) 3756–3763.CrossRefGoogle Scholar
  21. [21]
    V. Muthupandi, P.B. Srinivasan, S.K. Seshadri, S. Sundaresan, Mater. Sci. Eng. A 358 (2003) 9–16.CrossRefGoogle Scholar
  22. [22]
    F. Hengsbach, P. Koppa, K. Duschik, M.J. Holzweissig, M. Burns, J. Nellesen, W. Tillmann, T. Tröster, K.P. Hoyer, M. Schaper, Mater. Des. 133 (2017) 136–142.CrossRefGoogle Scholar
  23. [23]
    M. Pohl, O. Storz, T. Glogowski, Mater. Charact. 58 (2007) 65–71.CrossRefGoogle Scholar
  24. [24]
    J.O. Nilsson, Mater. Sci. Technol. 8 (1992) 685–700.CrossRefGoogle Scholar
  25. [25]
    Q. Sun, J. Wang, H.B. Li, Y. Li, Y.D. Hu, J.G. Bai, P.D. Han, J. Iron Steel Res. Int. 23 (2016) 1071–1079.CrossRefGoogle Scholar
  26. [26]
    Y. Ohmori, K. Nakai, H. Ohtsubo, Y. Isshiki, ISIJ Int. 35 (1995) 969–975.CrossRefGoogle Scholar
  27. [27]
    A.J.W. Menezes, H. Abreu, S. Kundu, H.K.D.H. Bhadeshia, P.M. Kelly, Sci. Technol. Weld. Join. 14 (2009) 4–10.CrossRefGoogle Scholar
  28. [28]
    T.S. Yong, H.S. Shin, H.W. Lee, Met. Mater. Int. 18 (2012) 1037–1040.CrossRefGoogle Scholar
  29. [29]
    Y.Y. Feng, Z.A. Luo, D.H. Zhang, J. Wei, L.J. Wang, Mater. Sci. Forum 575–578 (2008) 821–826.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Tian-hai Wu
    • 1
    • 2
  • Jian-jun Wang
    • 1
    • 2
    Email author
  • Hua-bing Li
    • 3
  • Zhou-hua Jiang
    • 3
  • Chun-ming Liu
    • 1
    • 2
  • Hong-yang Zhang
    • 4
  1. 1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of EducationNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  3. 3.School of MetallurgyNortheastern UniversityShenyangChina
  4. 4.Shenyang Northeastern Institute of Metal Materials Co., Ltd.ShenyangChina

Personalised recommendations