Corrosion behavior of low-carbon Cr micro-alloyed steel for grounding grids in simulated acidic soil

  • Jian LiEmail author
  • Hang Su
  • Feng Chai
  • Dong-mei Xue
  • Li Li
  • Xiang-yang Li
  • Hui-min Meng
Original Paper


To improve the corrosion resistance of steels for grounding grids, a low-carbon Cr micro-alloyed steel was developed (C1 steel), and corrosion behavior of Q235 steel and newly developed C1 steel in simulated acidic soil was investigated. The corrosion rate was evaluated with the mass loss measurements, while the corrosion morphology of surface and cross section of rust layer was observed by scanning electron microscopy. The corrosion products were analyzed by energy-dispersive X-ray spectrometry, X-ray diffraction and X-ray photoelectron spectroscopy, and the polarization curve was measured using potentiodynamic polarization method. Results indicated that C1 steel displayed good corrosion resistance in the simulated acidic soil, of which the corrosion rate was only 30% of that of Q235 steel after corrosion for 360 h. The analysis of rust layer showed that lower carbon content in steel could reduce the tendency of micro cell corrosion and appropriate amount of chromium could improve the corrosion potential of metal matrix. Moreover, the analysis of X-ray photoelectron spectroscopy revealed that the chromium enriched in inner rust layer of C1 steel existed mainly in the form of Fe2CrO4, which facilitated the formation of Cr-goethite and improved the protection of corrosion products.


Soil corrosion Grounding grid Low-carbon steel Cr micro-alloying Corrosion product Cr-goethite 


  1. [1]
    Electrical Construction Standard Formulation Technical Committee, IEEE Std. 80-2000 Guide for Safety in AC Substation Grounding, The Institute of Electrical and Electronics Engineers, Inc., New York, 2000.Google Scholar
  2. [2]
    W. Chen, R. Bi, J. Wang, H. Chen, Int. J. Comput. Electr. Eng. 5 (2013) 309–312.Google Scholar
  3. [3]
    F.J. Yan, X.G. Li, X.G. Wang, Appl. Mech. Mater. 331 (2013) 416–420.Google Scholar
  4. [4]
    L.H. Zhang, X.F. Zhang, W.Y. Zhang, Corros. Sci. Prot. Technol. 25 (2013) 127–132.Google Scholar
  5. [5]
    E.S. Ibrahim, Electr. Pow. Syst. Res. 52 (1999) 9–17.Google Scholar
  6. [6]
    X.Z. Li, S. Xu, Q. Yi, B. Feng, B.T. Hu, Adv. Mater. Res. 887-888 (2014) 1068–1071.Google Scholar
  7. [7]
    S.C. Lim, C. Gomes, M.Z.A.A. Kadir, Int. J. Electrochem. Sci. 8 (2013) 11429–11447.Google Scholar
  8. [8]
    X. Dong, D. Yang, X. Guan, M. Du, D. Liu, Anti-Corros. Method M. 60 (2013) 143–147.Google Scholar
  9. [9]
    A.M. Huntz, V. Bague, G. Beauple, C. Haut, C Sévérac, P. Lecour, X. Longaygue, F. Ropital, Appl. Surf. Sci. 207 (2003) 255–275.Google Scholar
  10. [10]
    L.N. Xu, S.Q. Guo, W. Chang, T.H. Chen, L.H. Hu, M.X. Lu, Appl. Surf. Sci. 270 (2013) 395–404.Google Scholar
  11. [11]
    R. Kirchheim, B. Heine, H. Fischmeister, S. Hofmann, H. Knote, U. Stolz, Corros. Sci. 29 (1989) 899–917.Google Scholar
  12. [12]
    T. Kamimura, S. Nasu, T. Segi, T. Tazaki, S. Morimoto, H. Miyuki, Corros. Sci. 45 (2003) 1863–1879.Google Scholar
  13. [13]
    Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 74 (2013) 424–429.Google Scholar
  14. [14]
    Y.H. Qian, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 71 (2013) 72–77.Google Scholar
  15. [15]
    S. Suzuki, Y. Takahashi, T. Kamimura, H. Miyuki, K. Shinoda, K. Tohji, Y. Waseda, Corros. Sci. 46 (2004) 1751–1763.Google Scholar
  16. [16]
    Y.H. Wu, T.M. Liu, S.X. Luo, C. Sun, Materialwiss. Werkst. 41 (2010) 142–146.Google Scholar
  17. [17]
    H. Su, A.J. Yan, X.P. Chen, F. Chai, J. Li, T. Huang, An accelerated simulation test method for soil corrosion, China, 201310259811.9, 2013.Google Scholar
  18. [18]
    Institute of Soil Science, Chinese Academy of Sciences in Nanjing, Analysis of soil physico-chemical properties, Shanghai Scientific and Technical Publishers, Shanghai, 1978.Google Scholar
  19. [19]
    G.C. Allen, S.J. Harris, J.A. Jutson, J.M. Dyke, Appl. Surf. Sci. 37 (1989) 111–134.Google Scholar
  20. [20]
    J. Guo, S.W. Yang, C.J. Shang, Y. Wang, X.L. He, Corros. Sci. 51 (2009) 242–251.Google Scholar
  21. [21]
    G.L. Cao, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Acta Metall. Sin. 46 (2010) 748–754.Google Scholar
  22. [22]
    M. Yamashita, H. Nagano, T. Misawa, H.E. Townsend, ISIJ Int. 38 (1998) 285–290.Google Scholar
  23. [23]
    M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, T. Misawa, Corros. Sci. 36 (1994) 283–299.Google Scholar
  24. [24]
    H. Konishi, M. Yamashita, H. Uchida, J. Mizuki, Mater. Trans. 46 (2005) 337–341.Google Scholar
  25. [25]
    Y.S. Choi, J.J. Shim, J.G. Kim, Mater. Sci. Eng. A 385 (2004) 148–156.Google Scholar
  26. [26]
    M. Yamashita, H. Konishi, J. Mizuki, H. Uchida, Mater. Trans. 45 (2004) 1920–1924.Google Scholar
  27. [27]
    M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, H. Uchida, Corros. Sci. 45 (2003) 381–394.Google Scholar
  28. [28]
    T.J. Yang, G.M. Li, S. Chen, W.S. Chang, X.Q. Chen, Corrosion Protection 31 (2010) 540–541.Google Scholar
  29. [29]
    J.B. Lee, Mater. Chem. Phys. 99 (2006) 224–234.Google Scholar
  30. [30]
    L.Y. Xu, Y.F. Cheng, Corros. Sci. 78 (2014) 162–171.Google Scholar
  31. [31]
    W.V. Baeckmann, W. Schwenk, W. Prinz. Handbook of cathodic corrosion protection, third ed., Gulf Professional Publishing, Houston, 1997.Google Scholar
  32. [32]
    D. Neff, P. Dillmann, L. Bellot-Gurlet, G. Berangere, Corros. Sci. 47 (2005) 515–535.Google Scholar
  33. [33]
    W. Han, C. Pan, Z.Y. Wang, G.C. Yu, Corros. Sci. 88 (2014) 89–100.Google Scholar
  34. [34]
    S.K. Kwon, K. Shinoda, S. Suzuki, Y. Waseda, Corros. Sci. 49 (2007) 1513–1526.Google Scholar
  35. [35]
    T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, H. Uchida, Corros. Sci. 48 (2006) 2799–2812.Google Scholar
  36. [36]
    S. Hara, T. Kamimura, H. Miyuki, M. Yamashita, Corros. Sci. 49 (2007) 1131–1142.Google Scholar
  37. [37]
    J. Morales, J.L. Tirado, C. Valera, J. Mater. Sci. 25 (1990) 1813–1815.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Jian Li
    • 1
    Email author
  • Hang Su
    • 1
  • Feng Chai
    • 1
  • Dong-mei Xue
    • 1
  • Li Li
    • 1
  • Xiang-yang Li
    • 2
  • Hui-min Meng
    • 3
  1. 1.Division of Engineering SteelCentral Iron and Steel Research InstituteBeijingChina
  2. 2.Enterprise Management DepartmentChina Iron and Steel Research Institute GroupBeijingChina
  3. 3.Corrosion and Protection CenterUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations