Effects of Ti addition on corrosion behavior of Zr-based metallic glass in chloride medium

  • Zhang-wei-jia Qiu
  • Hua-meng Fu
  • Hong-wei Zhang
  • Hong Li
  • Zheng-kun Li
  • Long Zhang
  • Zheng-wang Zhu
  • Ai-min Wang
  • Hai-feng ZhangEmail author
Original Paper


The effects of Ti element on the corrosion resistance of the metallic glass Zr51.3Al10Ni6Cu31.8Ag0.1Y0.8 in aqueous solution with various chloride concentrations were investigated, and the effect mechanism was discussed. X-ray diffraction confirmed that Ti-added Zr51.3Al10Ni6Cu31.8Ag0.1Y0.8 metallic glasses with diameter of 3 mm were all metallic glasses. Weight loss and electrochemical method were introduced to characterize their corrosion resistance, and X-ray photoelectron spectroscopy study was used to characterize the passive film composition. The results show that the corrosion resistance of metallic glass is significantly improved with Ti addition, and Zr dioxides dominate in passive film during corrosion when Ti content is low. High Ti addition can lead to an obvious accumulation of Ti dioxides, which results in a thicker, Ti-enriched protective passive film.


Zr-based metallic glass Amorphous alloy Titanium Corrosion resistance Electrochemical method Corrosion behavior 



This work is supported by the National Natural Science Foundation of China [51434008 (U1435204), 51531005], China’s Manned Space Station Project (Mission No. TGJZ800-2-RW024), CAS Key Project “Research & Development of Nuclear Materials and Service Safety Assurance Technology” (ZDRW-CN-2017-1), DongGuan Innovative Research Team Program (2014607134), Shenyang Key R&D and Technology Transfer Program (Z17-7-001), Theme Special Project of Shenyang Key Science and Technology Research and Development Programs (17-85-0-00), and Double-hundred Program of Shenyang Science and Technology Innovation Project (Y17-2-036).


  1. [1]
    A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Mater. Sci. Eng. A 179 (1994) 210–214.CrossRefGoogle Scholar
  2. [2]
    A. Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342–2344.CrossRefGoogle Scholar
  3. [3]
    A. Inoue, T. Zhang, T. Masumoto, Mater. Trans. JIM 30 (1989) 965–972.CrossRefGoogle Scholar
  4. [4]
    A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, Mater. Trans. JIM 32 (1991) 609–616.CrossRefGoogle Scholar
  5. [5]
    A. Inoue, A. Takeuchi, Acta Mater. 59 (2011) 2243–2267.CrossRefGoogle Scholar
  6. [6]
    J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22 (2007) 302–313.CrossRefGoogle Scholar
  7. [7]
    S. Hiromoto, A.P. Tsai, M. Sumita, T. Hanawa, Corros. Sci. 42 (2000) 1651–1660.CrossRefGoogle Scholar
  8. [8]
    U.K. Mudali, S. Baunack, J. Eckert, L. Schultz, A. Gebert, J. Alloy. Compd. 377 (2004) 290–297.CrossRefGoogle Scholar
  9. [9]
    A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, L. Schultz, Mater. Sci. Eng. A 267 (1999) 294–300.CrossRefGoogle Scholar
  10. [10]
    A. Gebert, K. Mummert, J. Eckert, L. Schultz, A. Inoue, Mater. Corros. 48 (1997) 293–297.CrossRefGoogle Scholar
  11. [11]
    B.A. Green, R.V. Steward, I. Kim, C.K. Choi, P.K. Liaw, K.D. Kihm, Y. Yokoyama, Intermetallics 17 (2009) 568–571.CrossRefGoogle Scholar
  12. [12]
    M.M. Lohrengel, Mater. Sci. Eng. R 11 (1993) 243–294.CrossRefGoogle Scholar
  13. [13]
    U.K. Mudali, S. Scudino, U. Kuhn, J. Eckert, A. Gebert, Scripta Mater. 50 (2004) 1379–1384.CrossRefGoogle Scholar
  14. [14]
    K. Mondal, B.S. Murty, U.K. Chatterjee, Corros. Sci. 48 (2006) 2212–2225.CrossRefGoogle Scholar
  15. [15]
    A. Kawashima, K. Ohmura, Y. Yokoyama, A. Inoue, Corros. Sci. 53 (2011) 2778–2784.CrossRefGoogle Scholar
  16. [16]
    S.J. Pang, T. Zhang, H. Kimura, K. Asami, A. Inoue, Mater. Trans. JIM 41 (2000) 1490–1494.CrossRefGoogle Scholar
  17. [17]
    V.R. Raju, U. Kuhn, U. Wolff, F. Schneider, J. Eckert, R. Reiche, A. Gebert, Mater. Lett. 57 (2002) 173–177.CrossRefGoogle Scholar
  18. [18]
    F.Q. Zu, Z.H. Chen, J.J. Tao, L.J. Liu, J. Yu, J. Xi, Trans. Nonferrous Met. Soc. China 14 (2004) 961–965.Google Scholar
  19. [19]
    X.P. Nie, X.M. Xu, Q.K. Jiang, L.Y. Chen, Y. Xu, Y.Z. Fang, G.Q. Xie, M.F. Luo, F.M. Wu, X.D. Wang, Q.P. Cao, J.Z. Jiang, J. Non-Cryst. Solids 355 (2009) 203–207.Google Scholar
  20. [20]
    M. Yan, J. Shen, T. Zhang, J. Zou, J. Non-Cryst. Solids 352 (2006) 3109–3112.Google Scholar
  21. [21]
    M. Yan, J. Zou, J. Shen, Acta Mater. 54 (2006) 3627–3635.CrossRefGoogle Scholar
  22. [22]
    J. Luo, H.P. Duan, C.L. Ma, S.J. Pang, T. Zhang, Mater. Trans. 47 (2006) 450–453.CrossRefGoogle Scholar
  23. [23]
    A. Gebert, P.F. Gostin, L. Schultz, Corros. Sci. 52 (2010) 1711–1720.CrossRefGoogle Scholar
  24. [24]
    G.S. Frankel, J. Electrochem. Soc. 145 (1998) 2186–2198.CrossRefGoogle Scholar
  25. [25]
    P.F. Gostin, D. Eigel, D. Grell, J. Eckert, E. Kerscher, A. Gebert, J. Mater. Res. 30 (2015) 233–241.CrossRefGoogle Scholar
  26. [26]
    A. Tauseef, N.H. Tariq, J.I. Akhter, B.A. Hasan, M. Mehmood, J. Alloy. Compd. 493 (2010) 708.CrossRefGoogle Scholar
  27. [27]
    J. Paillier, C. Mickel, P.F. Gostin, A. Gebert, Mater. Charact. 61 (2010) 1000–1008.CrossRefGoogle Scholar
  28. [28]
    S. Baunack, U.K. Mudali, A. Gebert, Appl. Surf. Sci. 252 (2005) 162–166.CrossRefGoogle Scholar
  29. [29]
    X.Y. Li, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Corros. Sci. 39 (1997) 1365–1380.CrossRefGoogle Scholar
  30. [30]
    H. Yoshioka, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Electrochim. Acta 36 (1991) 1227–1233.CrossRefGoogle Scholar
  31. [31]
    W.M.R. C. D. Wagner, L. E. Davis, J. Moulder, in: G. E. Muilenberg (ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer Corporation (Physical Electronics), 1979.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Zhang-wei-jia Qiu
    • 1
    • 2
  • Hua-meng Fu
    • 2
    • 3
  • Hong-wei Zhang
    • 2
    • 4
  • Hong Li
    • 2
  • Zheng-kun Li
    • 2
  • Long Zhang
    • 2
  • Zheng-wang Zhu
    • 2
  • Ai-min Wang
    • 2
  • Hai-feng Zhang
    • 2
    Email author
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangChina
  2. 2.Shenyang National Laboratory for Material ScienceInstitute of Metal Research, Chinese Academy of SciencesShenyangChina
  3. 3.Dongguan Eontec Co., Ltd.DongguanChina
  4. 4.Liaoning Jinyan Liquid Metal Technology Co., Ltd.ShenyangChina

Personalised recommendations