Advertisement

Effects of pressure on structure and dynamics of metallic glass-forming liquid with miscibility gap

  • Yun Cheng
  • Peng-fei Wang
  • Chuan-xiao Peng
  • Li-jing Jia
  • Yu-yang Wang
  • Li Wang
Original Paper
  • 5 Downloads

Abstract

The metallic liquid with miscibility gap has been widely explored recently because of the increasing plastic deformation ability of phase-separated metallic glass. However, the poor glass-forming ability limits its application as the structural materials due to the positive mixing enthalpy of the two elements. Since high pressure is in favor of the formation of the glass, the effect of pressure on the structural and dynamical heterogeneity of phase-separated Cu50Ag50 liquid is investigated by molecular dynamics simulation in the pressure range of 0–16 GPa. The results clearly show that the pressure promotes the formation of metallic glass by increasing the number of fivefold symmetry cluster W and dynamical relaxation time; meanwhile, the liquid–liquid phase separation is also enhanced, and the homogenous atom pairs show stronger interaction than heterogeneous atom pairs with increasing pressure. The dynamical heterogeneity is related to the formation of fivefold symmetry clusters. The lower growing rate of W at higher pressure with decreasing temperature corresponds to the slow increase in dynamical heterogeneity. The pressured glass with miscibility gap may act as a candidate glass with improved plastic formation ability. The results explore the structural and dynamical heterogeneity of phase-separated liquid at atomic level.

Keywords

Glass-forming liquid Miscibility gap High pressure Structural heterogeneity Dynamical heterogeneity Molecular dynamics simulation 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 51371108, 51501104 and 51501103) and the Natural Science Foundation of Shandong Province (No. ZR2014EMM011) is gratefully acknowledged. A major part of the present computation was carried out using the HPC Cluster Supercomputer center at Shandong University (Weihai).

References

  1. [1]
    J. Kramer, Annal. Phys. 411 (1934) 792.CrossRefGoogle Scholar
  2. [2]
    W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (2005) 195501.CrossRefGoogle Scholar
  3. [3]
    Y.Q. Cheng, H.W. Sheng, E. Ma, Phys. Rev. B 78 (2008) 1436–1446.Google Scholar
  4. [4]
    M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramn, D.C. Hofmann, Nat. Mater. 10 (2011) 123–128.CrossRefGoogle Scholar
  5. [5]
    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, Nature 451 (2008) 1085–1089.CrossRefGoogle Scholar
  6. [6]
    J.B. Li, J.S. Jang, S.R Jian, K.W. Chen, J.F. Lin, J.C. Huang, Mater. Sci. Eng. A 528 (2011) 8244–8248.CrossRefGoogle Scholar
  7. [7]
    G. Chen, J.L. Cheng, C.T. Liu, Intermetallics 28 (2012) 25–33.CrossRefGoogle Scholar
  8. [8]
    A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, K. Hono, Acta Mater. 52 (2004) 2441–2448.CrossRefGoogle Scholar
  9. [9]
    A. Inoue, S. Chen, T. Masumoto, Mater. Sci. Eng. A 179–180 (1994) 346–350.CrossRefGoogle Scholar
  10. [10]
    K. Ziewiec, J. Non-Cryst. Solids 358 (2012) 1790–1794.CrossRefGoogle Scholar
  11. [11]
    N. Mattern, U. Kühn, A. Gebert, T. Gemming, M. Zinkevich, H. Wendrock, Scripta Mater. 53 (2005) 271–274.CrossRefGoogle Scholar
  12. [12]
    S.S. Chen, H.R. Zhang, I. Todd, Scripta Mater. 72–73 (2014) 47–50.CrossRefGoogle Scholar
  13. [13]
    X.H. Du, J.C. Huang, H.M. Chen, H.S. Chen, Y.H. Lai, K.C. Hsieh, Intermetallics 17 (2009) 607–613.CrossRefGoogle Scholar
  14. [14]
    Y.L. Ren, R.L. Zhu, J. Sun, J.H. You, K.Q. Qiu, J. Alloy. Compd. 493 (2010) L42–L46.CrossRefGoogle Scholar
  15. [15]
    L. Wang, K.Q. Qiu, Y.L. Ren, Q.R. Hui, X.L. Cui, J. Alloy. Compd. 612 (2014) 5–9.CrossRefGoogle Scholar
  16. [16]
    X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, Appl. Phys. Lett. 91 (2007) 45.Google Scholar
  17. [17]
    H.S. Chen, J. Appl. Phys. 49 (1978) 3289–3291.CrossRefGoogle Scholar
  18. [18]
    A. Slipenyuk, J. Eckert, Scripta Mater. 50 (2004) 39–44.CrossRefGoogle Scholar
  19. [19]
    A. Pronin, M.V. Kondrin, A.G. Lyapin, V.V. Brazhkin, A.A. Volkov, P. Lunkenheimer, Phys. Rev. E 81 (2010) 041503.CrossRefGoogle Scholar
  20. [20]
    M. Paluch, R. Casalini, S. Henselbielowka, C.M. Roland, J. Chem. Phys. 116 (2002) 9839–9844.CrossRefGoogle Scholar
  21. [21]
    M. Wakeda, J. Saida, J. Li, S. Ogata, Sci. Rep. 5 (2015) 10545.CrossRefGoogle Scholar
  22. [22]
    C.M. Roland, S. Henselbielowka, M. Paluch, R. Casalini, Rep. Prog. Phys. 68 (2005) 1405–1478.CrossRefGoogle Scholar
  23. [23]
    H.B. Lou, L.H. Xiong, A.S. Ahmad, A.G. Li, K. Yang, K. Glazyrin, Acta Mater. 81 (2014) 420–427.CrossRefGoogle Scholar
  24. [24]
    P.G. Debenedetti, F.H. Stillinger, Nature 410 (2001) 259–267.CrossRefGoogle Scholar
  25. [25]
    S. Pawlus, M. Paluch, J. Ziolo, C.M. Roland, J. Phys. 21 (2009) 332101.Google Scholar
  26. [26]
    J. Ding, Y.Q. Cheng, E. Ma, Acta Mater. 69 (2014) 343–354.CrossRefGoogle Scholar
  27. [27]
    M.H. Cohen, D. Turnbull, J. Chem. Phys. 31 (1959) 1164–1169.CrossRefGoogle Scholar
  28. [28]
    N. Miyazaki, M. Wakeda, Y.J. Wang, S. Ogata, Npj Comput. Mater. 2 (2016) 16013.CrossRefGoogle Scholar
  29. [29]
    J. Ding, M. Asta, R.O. Ritchie, Phys. Rev. B 93 (2016) 140204R.CrossRefGoogle Scholar
  30. [30]
    E. Velasco, S Toxvaerd, Phys. Rev. E 54 (1996) 605–610.CrossRefGoogle Scholar
  31. [31]
    J.F. Xu, B.B. Wei, Acta Phys. Sin. 53 (2004) 1909–1915.Google Scholar
  32. [32]
    Y.S. Li, Z. Chen, Y.L. Lu, G.D. Xu, Chin. Phys. B 16 (2007) 854–861.CrossRefGoogle Scholar
  33. [33]
    M.L. Li, X.Y. Fu, H.N. Sun, H.A. Zhao, C. Li, Y.P. Duan, Y. Yan, M.H. Sun, Acta Phys. Sin. 58 (2009) 5604–5609.Google Scholar
  34. [34]
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339 (2013) 936–940.CrossRefGoogle Scholar
  35. [35]
    D. Hnisz, K. Shrinivas, R.A. Young, A.K. Chakraborty, P.A. Sharp, Cell 169 (2017) 13–23.CrossRefGoogle Scholar
  36. [36]
    A.J. Bray, Physica A 194 (1995) 41–52.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Yun Cheng
    • 1
  • Peng-fei Wang
    • 1
  • Chuan-xiao Peng
    • 1
  • Li-jing Jia
    • 1
  • Yu-yang Wang
    • 1
  • Li Wang
    • 1
  1. 1.School of Mechanical, Electrical and Information EngineeringShandong University (Weihai)WeihaiChina

Personalised recommendations