Advertisement

Effects of casting current on structure and properties of a nanostructured Zr–Cu–Fe–Al bulk metallic glass

  • Si-nan Liu
  • Wei-xia Dong
  • Chen-yu Lu
  • Zhu-wei Lu
  • Jia-cheng Ge
  • Chen-chen Yuan
  • Bao-an Sun
  • Tao Feng
  • Xun-li Wang
  • Si Lan
Original Paper
  • 32 Downloads

Abstract

The effects of casting currents on the thermophysical behaviors, atomic and nanoscale structure, and mechanical properties of two Zr-based-bulk metallic glasses, i.e., Zr59Cu33Al8 and Zr59(Cu0.55Fe0.45)33Al8, were studied by using differential scanning calorimetry, wide-angle X-ray diffraction, and small-angle X-ray scattering, as well as compression tests. The casting currents can be tuned to change the casting initiative temperature. Results revealed that there is no anomalous structural change for the Zr59Cu33Al8 molten liquid before crystallization during cooling with different casting currents. In contrast, liquid-state phase separation was suggested to occur in the Zr59(Cu0.55Fe0.45)33Al8 molten liquid prepared using lower casting current before crystallization during cooling. The position shift of the first sharp diffraction peak for the diffraction pattern of Zr59(Cu0.55Fe0.45)33Al8 shows that the density of the molten liquid may decrease upon cooling at different casting currents. The small-angle X-ray scattering results indicate that the heterogeneity of the Zr59(Cu0.55Fe0.45)33Al8 metallic glasses increases with decreasing the casting temperature. As a result, the metallic glasses with a liquid-state phase separation possess better mechanical properties, including higher-yielding stress and more significant compressive ductility. The increase in degree of heterogeneity formed by nanoscale liquid-state phase separation and their interactions with the shear bands for the Zr–Cu–Fe–Al bulk metallic glasses were suggested to be responsible for the enhanced mechanical properties.

Keywords

Bulk metallic glass Liquid-state phase separation Wide-angle X-ray diffraction Small-angle X-ray scattering Structure heterogeneity 

Notes

Acknowledgements

Si Lan would like to acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 51501090 and 51520105001), as well as the support from the Natural Science Foundation of Jiangsu Province (Grant No. BK20171425), and the Fundamental Research Funds for the Central Universities (No. 30915015103). Tao Feng acknowledges the support from the NSFC with Grant No. 51571119 and the Fundamental Research Funds for the Central Universities (No. 30916011106). Bao-an Sun acknowledges the support from the NSFC with Grant No. 51671121 and the Fundamental Research Funds for the Central Universities (No. 30917015107). Si Lan acknowledges the useful discussion with Prof. Hui-xing Song from the Nanjing Huaxing Vessel Pressure Manufacture Co., Ltd.

References

  1. [1]
    W.L. Johnson, MRS Bulletin 24 (1999) 42–56.CrossRefGoogle Scholar
  2. [2]
    M. Chen, NPG Asia Mater. 3 (2011) 82–90.CrossRefGoogle Scholar
  3. [3]
    M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, Nat. Mater. 10 (2011) 123–128.CrossRefGoogle Scholar
  4. [4]
    D. Jang, J.R. Greer, Nat. Mater. 9 (2010) 215–219.CrossRefGoogle Scholar
  5. [5]
    J.X. Fang, U. Vainio, W. Puff, R. Wuerschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, H. Gleiter, Nano Lett. 12 (2012) 458–463.CrossRefGoogle Scholar
  6. [6]
    X.L. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, J.X. Fang, Scripta Mater. 98 (2015) 40–43.CrossRefGoogle Scholar
  7. [7]
    H. Gleiter, T. Schimmel, H. Hahn, Nano Today 9 (2014) 17–68.CrossRefGoogle Scholar
  8. [8]
    J.C. Ye, J. Lu, C.T. Liu, Q. Wang, Y. Yang, Nat. Mater. 9 (2010) 619–623.CrossRefGoogle Scholar
  9. [9]
    J. He, I. Kaban, N. Mattern, K. Song, B. Sun, J. Zhao, D.H. Kim, J. Eckert, A.L. Greer, Sci. Rep. 6 (2016) 25832.CrossRefGoogle Scholar
  10. [10]
    D. V. Louzguine-Luzgin, G. Xie, Q. Zhang, A. Inoue, Philos. Mag. 90 (2010) 1955–1968.CrossRefGoogle Scholar
  11. [11]
    D. Nagahama, T. Ohkubo, K. Hono, Scripta Mater. 49 (2003) 729–734.CrossRefGoogle Scholar
  12. [12]
    S. Lan, Y. Ren, X.Y. Wei, B. Wang, E.P. Gilbert, T. Shibayama, S. Watanabe, M. Ohnuma, X.L. Wang, Nat. Commun. 8 (2017) 14679.CrossRefGoogle Scholar
  13. [13]
    S. Lan, Z. Wu, X.L. Wang, Chin. Phys. B 26 (2017) 017104.CrossRefGoogle Scholar
  14. [14]
    C. Guo, Y. Fang, B. Wu, S. Lan, G. Peng, X.L. Wang, H. Hahn, H. Gleiter, T. Feng, Mater. Res. Lett. 5 (2017) 293–299.CrossRefGoogle Scholar
  15. [15]
    S. Lan, X. Wei, J. Zhou, Z. Lu, X. Wu, M. Feygenson, J. Neuefeind, X.L. Wang, Appl. Phys. Lett. 105 (2014) 201906.CrossRefGoogle Scholar
  16. [16]
    S. Lan, M. Blodgett, K.F. Kelton, J.L. Ma, J. Fan, X.L. Wang, Appl. Phys. Lett. 108 (2016) 211907.CrossRefGoogle Scholar
  17. [17]
    D. Ma, A.D. Stoica, X.L. Wang, Nat. Mater. 8 (2009) 30–34.CrossRefGoogle Scholar
  18. [18]
    X. Wu, S. Lan, Z. Wu, X. Wei, Y. Ren, H.Y. Tsang, X. Wang, Prog. Nat. Sci. 27 (2017) 482–486.CrossRefGoogle Scholar
  19. [19]
    G.F.A. Guinier, C.B. Walker, G.H. Vineyard, Phys. Today 9 (1956) 38–39.CrossRefGoogle Scholar
  20. [20]
    B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, W.H. Wang, Phys. Rev. Lett. 109 (2012) 189904.CrossRefGoogle Scholar
  21. [21]
    H.B. Yu, J. Hu, X.X. Xia, B.A. Sun, X.X. Li, W.H. Wang, H.Y. Bai, Scripta Mater. 61 (2009) 640–643.CrossRefGoogle Scholar
  22. [22]
    Z. Wang, J.J. Li, L.W. Ren, Y. Zhang, J.W. Qiao, B.C. Wang, J. Iron Steel Res. Int. 23 (2016) 42–47.CrossRefGoogle Scholar
  23. [23]
    D. Radaj, Heat effects of welding: temperature field, residual stress, distortion, Springer Science & Business Media, Berlin, 2012.Google Scholar
  24. [24]
    N. Karunakaran, V. Balasubramanian, Trans. Nonferrous Met. Soc. China 21 (2011) 278–286.CrossRefGoogle Scholar
  25. [25]
    M.Q. Cheng, Y.L. An, H.Y. Du, Y.H. Wei, D. Fan, Trans. China Weld. Inst. 31 (2010) 33–37.Google Scholar
  26. [26]
    J. W. Cahn, Acta Metall. 9 (1961) 795–801.CrossRefGoogle Scholar
  27. [27]
    K.F. Yao, C.Q. Zhang, Appl. Phys. Lett. 90 (2007) 061901.CrossRefGoogle Scholar
  28. [28]
    Q. Wang, Y. Yang, H. Jiang, C.T. Liu, H.H. Ruan, J. Lu, Sci. Rep. 4 (2014) 4757.CrossRefGoogle Scholar
  29. [29]
    K.F. Yao, F. Ruan, Y.Q. Yang, N. Chen, Appl. Phys. Lett. 88 (2006) 122106.CrossRefGoogle Scholar
  30. [30]
    Y. Shao, G.N. Yang, K.F. Yao, X. Liu, Appl. Phys. Lett. 105 (2014) 181909.CrossRefGoogle Scholar
  31. [31]
    Q. Wang, J.J. Liu, Y.F. Ye, T.T. Liu, S. Wang, C.T. Liu, J. Lu, Y. Yang, Mater. Today 20 (2017) 293–300.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Si-nan Liu
    • 1
  • Wei-xia Dong
    • 1
  • Chen-yu Lu
    • 2
  • Zhu-wei Lu
    • 3
  • Jia-cheng Ge
    • 1
  • Chen-chen Yuan
    • 3
  • Bao-an Sun
    • 1
  • Tao Feng
    • 1
  • Xun-li Wang
    • 2
  • Si Lan
    • 1
  1. 1.Herbert Gleiter Institute of Nanoscience, School of Materials Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of PhysicsCity University of Hong KongHong KongChina
  3. 3.School of Materials Science and EngineeringSoutheast UniversityNanjingChina

Personalised recommendations