Advertisement

Effect of Ti–Mg–Ca treatment on properties of heat-affected zone after high heat input welding

  • Hao-nan Lou
  • Chao Wang
  • Bing-xing WangEmail author
  • Zhao-dong Wang
  • R.D.K. Misra
Original Paper
  • 141 Downloads

Abstract

The combined influence of Mg and Ca treatment on the properties of heat-affected zone (HAZ) of low-carbon steel after high heat input welding was systematically studied. Experimental steels deoxidized with different elements were prepared, i.e., C–Mn steel with Al, Ti–Ca steel with Ti and Ca, Ti–Mg–Ca steel with Ti, Mg and Ca. Results showed that the inclusions in C–Mn steel were mainly Al2O3 and MnS with low density and large size. However, the average size was refined to only ~ 0.34 μm in Ti–Mg–Ca steel and the amount increased remarkably. Microstructure of simulated HAZ for 200 kJ/cm changed from ferrite side plates or upper bainite to acicular ferrite after treatment with Ti, Mg and Ca. Ca addition decreased the strain field around inclusions and enhanced the ability of acicular ferrite nucleation. In situ observation of Ti–Mg–Ca steel showed that the movement of austenite grain boundaries was retarded and nucleation sites of acicular ferrite were greater than Ti–Ca steel because of Mg addition. Impact energy of HAZ at − 40 °C was increased from 7 to 232 J and showed excellent stability because of Ti–Mg–Ca treatment. High volume fraction of acicular ferrite acted as obstacles toward cleavage cracks.

Keywords

Heat-affected zone Microstructure Strain field Impact energy Ca–Mg treatment 

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300602). R.D.K. Misra gratefully acknowledges continued collaboration with Northeastern University as an honorary professor by providing guidance to students in research.

References

  1. [1]
    G.L. Liang, S.W. Yang, H.B. Wu, X.L. Liu, Rare Metals 32 (2013) 129–133.CrossRefGoogle Scholar
  2. [2]
    J. Yang, K. Zhu, R.Z. Wang, J.G. Shen, J. Iron Steel Res. Int. 18 (2011) No.4, 141–147.Google Scholar
  3. [3]
    A. Kojima, K.I. Yoshii, T. Hada, O. Saeki, K. Ichikawa, Y. Yoshida, Y. Shimura, K. Azuma, Nippon Steel Technical Report 90 (2004) 39–44.Google Scholar
  4. [4]
    T. Koseki, G. Thewlis, Mater. Sci. Technol. 21 (2005) 867–879.CrossRefGoogle Scholar
  5. [5]
    H.G. Pisarski, R.G. Pargeter, Met. Constr. 16 (1984) 412–417.Google Scholar
  6. [6]
    O. Grong, O.M. Akselsen, Met. Constr. 18 (1986) 557–562.Google Scholar
  7. [7]
    J.M. Gregg, H.K.D.H. Bhadeshia, Acta Mater. 45 (1997) 739–748.CrossRefGoogle Scholar
  8. [8]
    K. Yamamoto, T. Hasegawa, J. Takamura, ISIJ Int. 36 (1996) 80–86.CrossRefGoogle Scholar
  9. [9]
    H. Mabuchi, R. Uemori, M. Fujioka, ISIJ Int. 36 (1996) 1406–1412.CrossRefGoogle Scholar
  10. [10]
    J.L. Lee, Y.T. Pan, ISIJ Int. 35 (1995) 1027–1033.CrossRefGoogle Scholar
  11. [11]
    F. Chai, C.F. Yang, H. Su, Y.Q. Zhang, Z. Xu, J. Iron Steel Res. Int. 16 (2009) No. 1, 69–74.CrossRefGoogle Scholar
  12. [12]
    X. Li, Y. Zhang, X. Pan, Heat Treat. Met. 39 (2014) 9–15.Google Scholar
  13. [13]
    T. Kato, S. Sato, H. Ohta, T. Shiwaku, Kobelco Technology Review 30 (2011) 32–35.Google Scholar
  14. [14]
    C.H. Chang, I.H. Jung, S.C. Park, H.S. Kim, H.G. Lee, Ironmak. Steelmak. 32 (2005) 251–257.CrossRefGoogle Scholar
  15. [15]
    H.S. Kim, C.H. Chang, H.G. Lee, Scripta Mater. 53 (2005) 1253–1258.CrossRefGoogle Scholar
  16. [16]
    B. Wen, B. Song, J. Manuf. Sci. Prod. 13 (2013) 61–72.Google Scholar
  17. [17]
    K. Zhu, J. Yang, R.Z. Wang, Z.G. Yang, J. Iron Steel Res. Int. 18 (2011) No. 9, 60–64.CrossRefGoogle Scholar
  18. [18]
    M.H. Shi, P.Y. Zhang, C. Wang, F.X. Zhu, ISIJ Int. 54 (2014) 932–937.CrossRefGoogle Scholar
  19. [19]
    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, E. Rahimi, Micron 45 (2013) 107–114.CrossRefGoogle Scholar
  20. [20]
    M. Díaz-Fuentes, A. Iza-Mendia, I. Gutiérrez, Metall. Mater. Trans. A 34 (2003) 2505–2516.CrossRefGoogle Scholar
  21. [21]
    Y.M. Kim, H. Lee, N.J. Kim, Mater. Sci. Eng. A 478 (2008) 361–370.CrossRefGoogle Scholar
  22. [22]
    H.K. Sung, S.Y. Shin, W. Cha, K. Oh, S. Lee, N.J. Kim, Mater. Sci. Eng. A 528 (2011) 3350–3357.CrossRefGoogle Scholar
  23. [23]
    A.F. Gourgues, H.M. Flower, T.C. Lindley, Mater. Sci. Technol. 16 (2000) 26–40.CrossRefGoogle Scholar
  24. [24]
    J.S. Byun, J.H. Shim, Y.W. Cho, D.N. Lee, Acta Mater. 51 (2003) 1593–1606.CrossRefGoogle Scholar
  25. [25]
    Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, K. Okamoto, ISIJ Int. 34 (1994) 829–835.CrossRefGoogle Scholar
  26. [26]
    G. Shigesato, M. Sugiyama, S. Aihara, R. Uemori, Y. Tomita, Tetsu To Hagane 87 (2001) 93–100.CrossRefGoogle Scholar
  27. [27]
    J.H. Shim, J.S. Byun, Y.W. Cho, Y.J. Oh, J.D. Shim, D.N. Lee, Scripta Mater. 44 (2001) 49–54.CrossRefGoogle Scholar
  28. [28]
    I.E. Grey, C. Li, A.F. Reid, J. Solid State Chem. 17 (1976) 343–352.CrossRefGoogle Scholar
  29. [29]
    D. Brooksbank, K.W. Andrews, Tetsu-to-Hagane 207 (1969) 474–483.Google Scholar
  30. [30]
    D. Brooksbank, K.W. Andrews, Tetsu-to-Hagane 210 (1972) 246–255.Google Scholar
  31. [31]
    S. Kanazawa, A. Nakashima, K. Okamoto, K. Kanaya, Tetsu-to-Hagane 61 (1975) 2589–2603.CrossRefGoogle Scholar
  32. [32]
    K. Zhu, Z.G. Yang, Metall. Mater. Trans. A 42 (2011) 2207–2213.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Hao-nan Lou
    • 1
  • Chao Wang
    • 1
  • Bing-xing Wang
    • 1
    Email author
  • Zhao-dong Wang
    • 1
  • R.D.K. Misra
    • 2
  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina
  2. 2.Laboratory for Excellence in Advanced Steels Research, Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at EI PasoEI PasoUSA

Personalised recommendations