Advertisement

Zr55.8Al19.4(Co1−xCux)24.8 (x = 0–0.8 at.%) bulk metallic glasses for surgical devices applications

  • Kai-ming Han
  • Jian-bing Qiang
  • Ying-min Wang
  • Bing-bing Zhao
  • Peter Häussler
Original Paper
  • 12 Downloads

Abstract

Zr–Al–Co–Cu bulk metallic glasses (BMGs) are promising surgical materials. By using the electron concentration criterion for BMG composition design, a series of Zr55.8Al19.4(Co1−xCux)24.8 (x = 0–0.8 at.%) alloys were produced, of which BMG rod samples with different diameters were made by copper mold casting. Among these alloys, the Zr55.8Al19.4Co17.36Cu7.44 BMG exhibited a centimeter-scale glass formation size (dmax = 12 mm), an ultrahigh strength (σy = 2.04 GPa), a large room-temperature plasticity (εp = 4.0%), and a fracture toughness (KQ = 120 MPa m1/2), as well as good corrosion resistance in phosphate-buffered solution. The attainment of the combination of properties as large glass-forming ability with excellent mechanical and corrosion stability would suit the surgical devices applications.

Keywords

Zr–Al–Co–Cu Bulk metallic glass Biomedical material Mechanical property 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51671045), the Science Challenge Project (TZ2016004), the Fundamental Research Funds for the Central Universities (DUT16ZD209), the National Magnetic-Confinement Fusion Science Program of China (2013GB107003 and 2015GB105003), and the Nuclear Energy Development Project (H660003-13-02).

References

  1. [1]
    M.F. Ashby, A.L. Greer, Scripta Mater. 54 (2006) 321–326.CrossRefGoogle Scholar
  2. [2]
    J.R. Scully, A. Gebert, J.H. Payer, J. Mater. Res. 22 (2007) 302–313.CrossRefGoogle Scholar
  3. [3]
    H.F. Li, Y.F. Zheng, Acta Biomater. 36 (2016) 1–20.CrossRefGoogle Scholar
  4. [4]
    P. Meagher, E.D. O′Cearbhaill, J.H. Byrne, D.J. Browne, Adv. Mater. 28 (2016) 5755–5762.CrossRefGoogle Scholar
  5. [5]
    M.S. Dambatta, S. Izman, B. Yahaya, J.Y. Lim, D. Kurniawan, J. Non-Cryst. Solids 426 (2015) 110–115.CrossRefGoogle Scholar
  6. [6]
    L. Liu, C.L. Qiu, Q. Chen, K.C. Chan, S.M. Zhang, J. Biomed. Mater. Res. 86A (2008) 160–169.CrossRefGoogle Scholar
  7. [7]
    C.L. Qiu, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang, Scripta Mater. 55 (2006) 605–608.CrossRefGoogle Scholar
  8. [8]
    P. Häussler, Phys. Rep. 222 (1992) 65–143.CrossRefGoogle Scholar
  9. [9]
    Y. Yokoyama, H. Fredriksson, H. Yasuda, M. Nishijima, A. Inoue, Mater. Trans. 48 (2007) 1363–1372.CrossRefGoogle Scholar
  10. [10]
    Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, G.Q. Xie, K. Fujita, A. Inoue, J. Alloy. Compd. 536 (2012) S117-S121.CrossRefGoogle Scholar
  11. [11]
    T. Wada, F.X. Qin, X.M. Wang, M. Yoshimura, A. Inoue, N. Sugiyama, R. Ito, N. Matsushita, J. Mater. Res. 24 (2009) 2941–2948.CrossRefGoogle Scholar
  12. [12]
    A. Inoue, T. Zhang, Mater. Trans. JIM 37 (1996) 185–187.CrossRefGoogle Scholar
  13. [13]
    Q.S. Zhang, W. Zhang, A. Inoue, Scripta Mater. 61 (2009) 241–244.CrossRefGoogle Scholar
  14. [14]
    Q.K. Jiang, X.P. Nie, Y.G. Li, Y. Jin, Z.Y. Chang, X.M. Huang, J.Z. Jiang, J Alloy. Compd. 443 (2007) 191–194.CrossRefGoogle Scholar
  15. [15]
    K.M. Han, J.B. Qiang, Y.M. Wang, P. Häussler, J. Alloy. Compd. 729 (2017) 144–149.CrossRefGoogle Scholar
  16. [16]
    A. Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342–2344.CrossRefGoogle Scholar
  17. [17]
    T. Wada, T. Zhang, A. Inoue, Mater Trans. 44 (2003) 1839–1844.CrossRefGoogle Scholar
  18. [18]
    Y.M. Wang, X.F. Zhang, J.B. Qiang, Q. Wang, D.H. Wang, D.J. Li, C.H. Shek, C. Dong, Scripta Mater. 50 (2004) 829–833.CrossRefGoogle Scholar
  19. [19]
    Y.M. Wang, J.B. Qiang, C.H. Wong, C.H. Shek, C. Dong, J. Mater. Res. 18 (2003) 642–648.CrossRefGoogle Scholar
  20. [20]
    Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan, W.H. Wang, Science 315 (2007) 1385–1388.CrossRefGoogle Scholar
  21. [21]
    Z.Q. Liu, R.T. Qu, Z.F. Zhang, J. Appl. Phys. 117 (2015) 014901.CrossRefGoogle Scholar
  22. [22]
    W.L. Johnson, K. Samwer, Phys. Rev. Lett. 95 (2005) 195501.CrossRefGoogle Scholar
  23. [23]
    X. Cui, F.Q. Zu, W.X. Jiang, L.F. Wang, Z.Z. Wang, J. Non-Cryst. Solids 375 (2013) 83–87.Google Scholar
  24. [24]
    J.M. Park, J.H. Han, N. Mattern, D.H. Kim, J. Eckert, Metall. Mater. Trans. A 43 (2012) 2598–2603.CrossRefGoogle Scholar
  25. [25]
    J.J. Lewandowski, W.H. Wang, A.L. Greer, Phil. Mag. Lett. 85 (2005) 77–87.CrossRefGoogle Scholar
  26. [26]
    L.S. Luo, J.Q. Wang, J.T. Huo, Y.Y. Zhao, H. Men, C.T. Chang, X.M. Wang, R.W. Li, J. Iron Steel Res. Int. 23 (2016) 48–52.CrossRefGoogle Scholar
  27. [27]
    J.J. Liu, Q. Wang, K. Sun, S. Gravier, J.J. Blandin, B.A. Sun, J. Lu, J. Iron Steel Res. Int. 24 (2017) 475–482.CrossRefGoogle Scholar
  28. [28]
    B.A. Sun, W.H. Wang, Prog. Mater. Sci. 74 (2015) 211–307.CrossRefGoogle Scholar
  29. [29]
    H. Tada, P.C. Paris, G.R. Irwin, The stress analysis of cracks handbook, Del Research Corporation Hellertown, PA, 1973.Google Scholar
  30. [30]
    M. Niinomi, Mater. Sci. Eng. A 243 (1998) 231–236.CrossRefGoogle Scholar
  31. [31]
    U. Mizutani, Prog. Mater. Sci. 28 (1983) 97–228.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Kai-ming Han
    • 1
  • Jian-bing Qiang
    • 1
  • Ying-min Wang
    • 1
  • Bing-bing Zhao
    • 2
  • Peter Häussler
    • 3
  1. 1.Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education)Dalian University of TechnologyDalianChina
  2. 2.ArcX Coating Hub Asia, Höganäs (China) Co., Ltd.ShanghaiChina
  3. 3.Physics InstituteChemnitz University of TechnologyChemnitzGermany

Personalised recommendations