Advertisement

Deformation behavior of Ta wire-reinforced Zr-based bulk metallic glass composites

  • Sen Chen
  • Hua-meng Fu
  • Zheng-kun Li
  • Long Zhang
  • Hong-wei Zhang
  • Zheng-wang Zhu
  • Hong Li
  • Ai-min Wang
  • Yan-dong Wang
  • Hai-feng Zhang
Original Paper

Abstract

A Ta wire-reinforced Zr-based bulk metallic glass composite with a new type of structure was prepared successfully by the method of liquid metal infiltration. Ta wires distribute uniformly in the metallic glass matrix in the form of spirals. The composite exhibits two yield stages under compressive stress, and the samples are compressed into thin pancakes. The micro-cracks originate at the interface between the Ta wire and the metallic glass matrix and propagate perpendicularly to the interface, which then induce multiple shear bands in the metallic glass matrix due to the stress concentration. Shear cracks form in the metallic glass matrix during the continued loading process as a result of the interaction of shear bands. Deformation bands of Ta wires occur under the impact of shear bands. The local stress fields in the composite are changed obviously due to the introduction of the spiral-formed reinforcements. The investigation of the deformation behavior and mechanism suggests a new method for the application of bulk metallic glass composites as the structural materials.

Keywords

Bulk metallic glass composite Ta wire Spiral Shear band Deformation behavior 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51434008 (U1435204), 51531005), the China’s Manned Space Station Project (Mission No: TGJZ800-2-RW024), Dongguan Innovative Research Team Program (2014607134), Shenyang Key R & D and Technology Transfer Program (Z17-7-001), Seed Fund Project of Shenyang National University Science and Technology Zone (20151019001) and Double-hundred Program of Shenyang Science and Technology Innovation Project (Y17-2-036).

References

  1. [1]
    A.L. Greer, Science 267 (1995) 1947–1953.CrossRefGoogle Scholar
  2. [2]
    M.M. Trexler, N.N. Thadhani, Prog. Mater. Sci. 55 (2010) 759–839.CrossRefGoogle Scholar
  3. [3]
    W.H. Wang, Prog. Mater. Sci. 57 (2012) 487–656.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. Pan, Q. Chen, L. Liu, Y. Li, Acta Mater. 59 (2011) 5146–5158.CrossRefGoogle Scholar
  5. [5]
    S.X. Song, T.G. Nieh, Intermetallics 19 (2011) 1968–1977.CrossRefGoogle Scholar
  6. [6]
    L. Zhang, S. Pauly, M.Q. Tang, J. Eckert, H.F. Zhang, Sci. Rep. 6 (2016) 19235.CrossRefGoogle Scholar
  7. [7]
    L. Zhang, H.F. Zhang, W.Q. Li, T. Gemming, P. Wang, M. Bönisch, D. Sopu, J. Eckert, S. Pauly, J. Alloy. Compd. 708 (2017) 972–981.CrossRefGoogle Scholar
  8. [8]
    H. Choi-Yim, R.D. Conner, F. Szuecs, W.L. Johnson, Acta Mater. 50 (2002) 2737–2745.CrossRefGoogle Scholar
  9. [9]
    R.D. Conner, R.B. Dandliker, W.L. Johnson, Acta Mater. 46 (1998) 6089–6102.CrossRefGoogle Scholar
  10. [10]
    J.W. Qiao, H.L. Jia, P.K. Liaw, Mater. Sci. Eng. R 100 (2016) 1–69.CrossRefGoogle Scholar
  11. [11]
    H. Choi-Yim, W. L. Johnson, Appl. Phys. Lett. 71 (1997) 3808–3810.CrossRefGoogle Scholar
  12. [12]
    R.D. Conner, H. Choi-Yim, W.L. Johnson, J. Mater. Res. 14 (1999) 3292–3297.CrossRefGoogle Scholar
  13. [13]
    T. Liu, P. Shen, F. Qiu, T. Zhang, Q.C. Jiang, Adv. Eng. Mater. 11 (2009) 392–398.CrossRefGoogle Scholar
  14. [14]
    H. Choi-Yim, S.Y. Lee, R.D. Conner, Scripta Mater. 58 (2008) 763–766.CrossRefGoogle Scholar
  15. [15]
    P. Wadhwa, J. Heinrich, R. Busch, Scripta Mater. 56 (2007) 73–76.CrossRefGoogle Scholar
  16. [16]
    K. Lee, S.B. Lee, S.K. Lee, S. Lee, Metall. Mater. Trans. A 40 (2009) 828–837.CrossRefGoogle Scholar
  17. [17]
    T. Wang, L. Wang, Q.J. Wang, Y.J. Liu, X.D. Hui, Sci. Rep. 7 (2017) 1238.CrossRefGoogle Scholar
  18. [18]
    J.C. Qiao, Y. Yao, J.M. Pelletier, L.M. Keer, Int. J. Plasticity 82 (2016) 62–75.CrossRefGoogle Scholar
  19. [19]
    Y.J. Huang, P. Xue, X. Cheng, Y.M. Wang, F.Y. Cao, Z.L. Ning, J.F. Sun, J. Iron Steel Res. Int. 24 (2017) 416–420.CrossRefGoogle Scholar
  20. [20]
    J. Shen, Y.J. Huang, J.F. Sun, J. Mater. Res. 22 (2007) 3067–3074.CrossRefGoogle Scholar
  21. [21]
    R.D. Conner, R.B. Dandliker, V. Scruggs, W.L. Johnson, Int. J. Impact Eng. 24 (2000) 435–444.CrossRefGoogle Scholar
  22. [22]
    H. Zhang, Z.F. Zhang, Z.G. Wang, K.Q. Qiu, H.F. Zhang, Q.S. Zang, Metall. Mater. Trans. A 37 (2006) 2459–2469.CrossRefGoogle Scholar
  23. [23]
    K. Lee, S.B. Lee, S.K. Lee, S. Lee, Metall. Mater. Trans. A 39 (2008) 1319–1326.CrossRefGoogle Scholar
  24. [24]
    H.F. Zhang, H.Li, A.M. Wang, H.M. Fu, B.Z. Ding, Z.Q. Hu, Intermetallics 17 (2009) 1070–1077.CrossRefGoogle Scholar
  25. [25]
    J.H. Chen, Y. Chen, M.Q. Jiang, X.W. Chen, H.M. Fu, H.F. Zhang, L.H. Dai, Metall. Mater. Trans. A 45 (2014) 5397–5408.CrossRefGoogle Scholar
  26. [26]
    H. Zhang, L.Z. Liu, Z.F. Zhang, K.Q. Qiu, X.F. Pan, H.F. Zhang, Z.G. Wang, J. Mater. Res. 21 (2006) 1375–1384.CrossRefGoogle Scholar
  27. [27]
    B. Zhang, H.M. Fu, P.F. Sha, Z.W. Zhu, C. Dong, H.F. Zhang, Z.Q. Hu, Mater. Sci. Eng. A 566 (2013) 16–21.CrossRefGoogle Scholar
  28. [28]
    S.B. Lee, S.K. Lee, S. Lee, Mater. Sci. Eng. A 47 (2009) 542–549.Google Scholar
  29. [29]
    Z.K. Li, H.M. Fu, P.F. Sha, Z.W. Zhu, A.M. Wang, H. Li, H.W. Zhang, H.F. Zhang, Z.Q. Hu, Sci. Rep. 5 (2015) 8967.CrossRefGoogle Scholar
  30. [30]
    R.B. Dandliker, R.D. Conner, W.L. Johnson, J. Mater. Res. 13 (1998) 2896–2901.CrossRefGoogle Scholar
  31. [31]
    W.F. Ma, H.C. Kou, C.S. Chen, J.S. Li, H. Chang, L. Zhou, H.Z. Fu, Mater. Sci. Eng. A 486 (2008) 308–312.CrossRefGoogle Scholar
  32. [32]
    M.L. Wang, G.L. Chen, X. Hui, Y. Zhang, Z.Y. Bai, Intermetallics 15 (2007) 1309–1315.CrossRefGoogle Scholar
  33. [33]
    D. Dragoi, E. Üstündag, B. Clausen, M.A.M. Bourke, Scripta Mater. 45 (2001) 245–252.CrossRefGoogle Scholar
  34. [34]
    L. Wang, H. Bei, Y.F. Gao, Z.P. Lu, T.G. Nieh, Acta Mater. 59 (2011) 7627–7633.CrossRefGoogle Scholar
  35. [35]
    X.Q. Zhang, Y.F. Xue, H.F. Zhang, H.M. Fu, Z.B. Wang, Z.H. Nie, L. Wang, J. Mater. Sci. Technol. 31 (2015) 159–163.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  • Sen Chen
    • 1
    • 2
  • Hua-meng Fu
    • 2
    • 3
  • Zheng-kun Li
    • 2
  • Long Zhang
    • 2
  • Hong-wei Zhang
    • 2
    • 4
  • Zheng-wang Zhu
    • 2
  • Hong Li
    • 2
  • Ai-min Wang
    • 2
  • Yan-dong Wang
    • 1
  • Hai-feng Zhang
    • 1
    • 2
  1. 1.School of Materials Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangChina
  3. 3.Dongguan Eontec Co., Ltd.DongguanChina
  4. 4.Liaoning Jinyan Liquid Metal Technology Co., Ltd.ShenyangChina

Personalised recommendations