Dissolution kinetics of solid fuels used in COREX gasifier and its influence factors

Original Paper
  • 18 Downloads

Abstract

Carbon dissolution from solid fuels used in a COREX gasifier was investigated in a high-temperature furnace to investigate the influences of temperature, carbon structure and ash properties of solid fuels into molten iron on carbon dissolution behavior. The results showed that the final carbon content of molten iron and dissolution reaction rate of carbon increased as the temperature increased. However, the dissolution behavior of different solid fuels varied with their properties. At the same temperature, the dissolution reaction rate of solid fuel from high to low was coke, semi-coke and lump coal. The apparent reaction rate constants of solid fuel were calculated using the piecewise fitting method based on the experimental data. The analyzed results showed that the dissolution rates of solid fuels had a good correlation with their microcrystalline structures. Moreover, the carbon crystallite structures of solid fuels used in COREX had greater influence on dissolution behavior than their ash properties.

Keywords

Solid fuel COREX Dissolution behavior Temperature Carbon structure Ash property 

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51704216, 51474164 and U201760101) and China Postdoctoral Science Foundation (No. 2016M602378).

References

  1. [1]
    Z. Luo, H. Zhou, T. Zhang, Y. You, H. Li, Z. Zou, J. Iron Steel Res. Int. 22 (2015) 1098–1106.CrossRefGoogle Scholar
  2. [2]
    Z. Qiu, Z. Luo, H. Zhou, R. Chen, F. Wang, Z. Zou, J. Iron Steel Res. Int. 24 (2017) 18–26.CrossRefGoogle Scholar
  3. [3]
    H. Li, H. Zhou, T. Zhang, Y. You, Z. Zou, W. Xu, J. Iron Steel Res. Int. 23 (2016) 516–524.CrossRefGoogle Scholar
  4. [4]
    L. Han, Z. Luo, H. Zhou, Z. Zou, Y. Zhang, J. Iron Steel Res. Int. 22 (2015) 304–310.CrossRefGoogle Scholar
  5. [5]
    W. Shen, S. Wu, M. Kou, K. Du, Y. Sun, J. Iron Steel Res. Int. 22 (2015) 200–206.CrossRefGoogle Scholar
  6. [6]
    Z. Xue, Q. Zou, H. Xu, Xinjiang Steel 130 (2014) 1–4.Google Scholar
  7. [7]
    R. Xu, J. Zhang, G. Wang, H. Zuo, Z. Liu, K. Jiao, Y. Liu, K. Li, Metall. Mater. Trans. B 47 (2016) 1–14.Google Scholar
  8. [8]
    R. Xu, J. Zhang, G. Wang, H. Zuo, P. Li, H. Wang, H. Lin, S. Liu, J. Therm. Anal. Calorim. 123 (2015) 773–783.CrossRefGoogle Scholar
  9. [9]
    Y. Guo, W. Xu, J. Zhu, J. Zhang, Metall. Mater. Trans. B 44 (2013) 1078–1085.CrossRefGoogle Scholar
  10. [10]
    Y. Guo, W. Xu, J. Zhu, J. Zhang, Ironmak. Steelmak. 40 (2013) 545–550.CrossRefGoogle Scholar
  11. [11]
    F. Wang, C. Bai, Y. Yu, G. Qiu, S. Zhang, Ironmak. Steelmak. 36 (2009) 590–596.CrossRefGoogle Scholar
  12. [12]
    F. McCarthy, V. Sahajwalla, J. Hart, N. Saha-Chaudhury, Metall. Mater. Trans. B 34 (2003) 573–580.CrossRefGoogle Scholar
  13. [13]
    C. Wu, V. Sahaiwalla, Metall. Mater. Trans. B 31 (2000) 243–251.CrossRefGoogle Scholar
  14. [14]
    C. Wu, V. Sahaiwalla, Metall. Mater. Trans. B 31 (2000) 215–216.CrossRefGoogle Scholar
  15. [15]
    J.K. Wright, B.R. Baldock, Metall. Mater. Trans. B 19 (1988) 375–382.CrossRefGoogle Scholar
  16. [16]
    J.K. Wright, F. Taylo, ISIJ Int. 33 (1993) 529–538.CrossRefGoogle Scholar
  17. [17]
    H. Sun, ISIJ Int. 45 (2005) 1482–1488.CrossRefGoogle Scholar
  18. [18]
    S.T. Cham, R. Sakurovs, H. Sun, V. Sahajwalla, ISIJ Int. 46 (2006) 652–659.CrossRefGoogle Scholar
  19. [19]
    S.T. Cham, V. Sahajwalla, R. Sakurovs, H. Sun, M. Dubikova, ISIJ Int. 44 (2004) 1835–1841.CrossRefGoogle Scholar
  20. [20]
    H.W. Gudenau, J.P. Mulanza, D.G.R. Sharma, Steel Res. Int. 61 (1990) 97–104.CrossRefGoogle Scholar
  21. [21]
    R. Khanna, F. Mccarthy, H. Sun, Metall. Mater. Trans. B 36 (2005) 719–729.CrossRefGoogle Scholar
  22. [22]
    D. Jang, Y. Kim, M. Shin, J. Lee, Metall. Mater. Trans. B 43 (2012) 1308–1314.CrossRefGoogle Scholar
  23. [23]
    F. Neumann, H. Schenck, W. Patterson, Giesserei 47 (1960) 709–716.Google Scholar
  24. [24]
    S. Orsten, F. Oeters, in: Proc. 5th Int. Steel Congress, Iron and Steel Society, Washington, 1986, pp. 143–155.Google Scholar
  25. [25]
    M. Chapman, Insoluble Oxide Product Formation and Its Effect on Coke Dissolution in Liquid Iron, University of Wollongong, Wollongong, 2009, 196–201.Google Scholar
  26. [26]
    L. Lu, V. Sahajwalla, C. Kong, D. Harris, Carbon 39 (2001) 1821–1833.CrossRefGoogle Scholar
  27. [27]
    R. Xu, B. Dai, W. Wang, J. Schenk, Z. Xue, Fuel Process. Technol. 173 (2018) 11–20.CrossRefGoogle Scholar
  28. [28]
    R. Xu, B. Dai, W. Wang, J. Schenk, A. Bhattacharyya, Z. Xue, Energ. Fuels (2017)  https://doi.org/10.1021/acs.energyfuels.7b03023.Google Scholar
  29. [29]
    W. Wang, J. Wang, R. Xu, Y. Yu, Y. Jin, Z. Xue, Fuel Process. Technol. 159 (2017) 118–127.CrossRefGoogle Scholar
  30. [30]
    W. Wang, B. Dai, R. Xu, J. Schenk, J. Wang, Z. Xue, Steel Res. Int. 88 (2017) e201700063.Google Scholar
  31. [31]
    O.O. Sonibare, T. Haeger, S.F. Foley, Energy 35 (2010) 5347–5353.CrossRefGoogle Scholar
  32. [32]
    R. Taylor, Comprehensive Composite Materials 4 (2003) 387–426.Google Scholar
  33. [33]
    M.W. Chapman, B.J. Monaghan, Metall. Mater. Trans. B 39 (2008) 418–430.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  3. 3.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations