Review of non-reactive CaO–Al2O3-based mold fluxes for casting high-aluminum steel

  • Lei Zhang
  • Wan-lin WangEmail author
  • Han-qing Shao


Advanced high-strength steels (AHSSs) have been gradually applied to modern auto industry, as they have the advantages of improving the steel strength and lightening the car weight, which not only ensures the safety but also saves the energy. However, the high-aluminum (Al) content in AHSSs may react with SiO2 in conventional CaO–SiO2-based mold flux during the process of continuous casting, which leads to the deterioration of the mold flux properties and a poor slab quality. Then, the non-reactive CaO–Al2O3-based mold flux was proposed and has been developing for the casting process of high-Al steels, but there are some problems of low consumption and insufficient lubrication that need to be solved. Thus, previous researches on the effect of each component on the properties of CaO–Al2O3-based mold flux were systematically summarized, and the situation of plant trials on CaO–Al2O3-based mold flux was evaluated. The results indicated that the proposed CaO–Al2O3-based mold fluxes could avoid the slag-metal reaction problems; however, the problems of lubrication, crystallization and heat transfer issues still exist. Therefore, tremendous works still need to be conducted for the development of new generation of CaO–Al2O3-based mold flux system. The review was performed aiming to provide a technical guidance for designing and optimizing CaO–Al2O3-based mold flux system that meets the demand of the continuous casting process of high-Al steels.


High-Al steel CaO–Al2O3-based mold flux Thermophysical property Lubrication Crystallization 



The financial support from National Natural Science Foundation of China (U1760202, 51661130154) and the Newton Advanced fellowship (NA150320) is greatly acknowledged.


  1. [1]
    O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.CrossRefGoogle Scholar
  2. [2]
    H. Suito, R. Inoue, ISIJ Int. 36 (1996) 528–536.CrossRefGoogle Scholar
  3. [3]
    Q. Wang, S. Qiu, P. Zhao, Metall. Mater. Trans. B 43 (2012) 424–430.CrossRefGoogle Scholar
  4. [4]
    Z. Zhang, G. Wen, P. Tang, S. Sridhar, ISIJ Int. 48 (2008) 739–746.CrossRefGoogle Scholar
  5. [5]
    Z.T. Zhang, G.H. Wen, J.L. Liao, S. Sridhar, Steel Res. Int. 81 (2010) 516–528.CrossRefGoogle Scholar
  6. [6]
    X. Yu, G.H. Wen, P. Tang, F.J. Ma, H. Wang, J. Iron Steel Res. Int. 18 (2011) No. 1, 20–25.CrossRefGoogle Scholar
  7. [7]
    X. Yu, G.H. Wen, P. Tang, B. Yang, J. Iron Steel Res. Int. 17 (2010) No. 5, 11–16.CrossRefGoogle Scholar
  8. [8]
    G.H. Kim, C.S. Kim, I. Sohn, ISIJ Int. 53 (2013) 170–176.CrossRefGoogle Scholar
  9. [9]
    G.H Kim, I. Sohn, J. Non-Cryst. Solids 358 (2012) 1530–1537.Google Scholar
  10. [10]
    G.H. Zhang, Y.L. Zhen, K.C. Chou, J. Iron Steel Res. Int. 23 (2016) 633–637.CrossRefGoogle Scholar
  11. [11]
    W. Yan, W. Chen, Y. Yang, C. Lippold, A. Mclean, ISIJ Int. 55 (2015) 1000–1009.CrossRefGoogle Scholar
  12. [12]
    L. Zhou, W. Wang, K. Zhou, Metall. Mater. Trans. E 2 (2015) 99–108.Google Scholar
  13. [13]
    L. Zhou, W. Wang, K. Zhou, Metals 6 (2016) 139–152.CrossRefGoogle Scholar
  14. [14]
    S. Street, K. James, N. Minor, A. Roelant, J. Tremp, Iron Steel Technol. 5 (2008) 38–49.Google Scholar
  15. [15]
    W. Wang, K. Blazek, A. Cramb, Metall. Mater. Trans. B 39 (2008) 66–74.CrossRefGoogle Scholar
  16. [16]
    C.X. Ji, Y. Cui, Z. Zeng, Z.H. Tian, C.L. Zhao, G.S. Zhu, J. Iron Steel Res. Int. 22 (2015) 53–56.CrossRefGoogle Scholar
  17. [17]
    D.J. Kim, J.H. Park, Metall. Mater. Trans. B 43 (2012) 875–886.CrossRefGoogle Scholar
  18. [18]
    B. Ozturk, E.T. Turkdogan, Metal Sci. 18 (1984) 299–305.CrossRefGoogle Scholar
  19. [19]
    Y.B. Kang, M.S. Kim, S.W. Lee, J.W. Cho, M.S. Park, H.G. Lee, Metall. Mater. Trans. B 44 (2013) 309–316.CrossRefGoogle Scholar
  20. [20]
    K. Blazek, H. Yin, G. Skoczylas, M. McClymonds, M. Frazee, AIST Trans. 8 (2011) 232–240.Google Scholar
  21. [21]
    J. Gao, G. Wen, T. Huang, B. Bai, P. Tang, Q. Liu, J. Am. Ceram. Soc. 99 (2016) 3941–3947.CrossRefGoogle Scholar
  22. [22]
    L. Zhou, H. Li, W. Wang, J. Chang, Metall. Mater. Trans. B 49 (2018) 3019–3029.CrossRefGoogle Scholar
  23. [23]
    T.S. Kim, J.H. Park, ISIJ Int. 54 (2014) 2031–2038.CrossRefGoogle Scholar
  24. [24]
    G.H. Kim, I. Sohn, Metall. Mater. Trans. B 45 (2014) 86–95.CrossRefGoogle Scholar
  25. [25]
    W. Yan, W. Chen, Y. Yang, C. Lippold, A. McLean, Ironmak. Steelmak. 42 (2015) 698–704.CrossRefGoogle Scholar
  26. [26]
    X.J. Fu, G.H. Wen, P. Tang, Q. Liu, Z.Y. Zhou, Ironmak. Steelmak. 41 (2014) 342–349.CrossRefGoogle Scholar
  27. [27]
    B. Jiang, W. Wang, I. Sohn, J. Wei, L. Zhou, B. Lu, Metall. Mater. Trans. B 45 (2014) 1057–1067.CrossRefGoogle Scholar
  28. [28]
    B. Hallstedl, J. Am. Ceram. Soc. 73 (1990) 15–23.CrossRefGoogle Scholar
  29. [29]
    C.B. Shi, M.D. Seo, J.W. Cho, S.H. Kim, Metall. Mater. Trans. B 45 (2014) 1081–1097.CrossRefGoogle Scholar
  30. [30]
    Q. Liu, G. Wen, J. Li, X. Fu, P. Tang, W. Li, Ironmak. Steelmak. 41 (2014) 292–297.CrossRefGoogle Scholar
  31. [31]
    J. Gao, G. Wen, Q. Sun, P. Tang, Q. Liu, Metall. Mater. Trans. B 46 (2015) 1850–1859.CrossRefGoogle Scholar
  32. [32]
    H. Wang, P. Tang, G.H. Wen, X. Yu, Ironmak. Steelmak. 38 (2011) 369–373.CrossRefGoogle Scholar
  33. [33]
    B. Lu, K. Chen, W. Wang, B. Jiang, Metall. Mater. Trans. B 45 (2014) 1496-1509.CrossRefGoogle Scholar
  34. [34]
    J.H. Park, D.J. Min, H.S. Song, ISIJ Int. 42 (2002) 38–43.CrossRefGoogle Scholar
  35. [35]
    B. Lu, W. Wang, Metall. Mater. Trans. B 46 (2015) 852–862.CrossRefGoogle Scholar
  36. [36]
    G.H. Kim, I. Sohn, ISIJ Int. 52 (2012) 68–73.CrossRefGoogle Scholar
  37. [37]
    L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang, J. Yu, Metall. Mater. Trans. B 49 (2018) 2232–2240.CrossRefGoogle Scholar
  38. [38]
    E. Gao, W. Wang, L. Zhang, J. Non-Cryst. Solids 473 (2017) 79–86.Google Scholar
  39. [39]
    S.S. Jung, I. Sohn, Metall. Mater. Trans. B 43 (2012) 1530–1539.CrossRefGoogle Scholar
  40. [40]
    D. Xiao, W. Wang, B. Lu, Metall. Mater. Trans. B 46 (2015) 873–881.CrossRefGoogle Scholar
  41. [41]
    W. Wang, A.W. Cramb, Steel Res. Int. 79 (2008) 271–277.CrossRefGoogle Scholar
  42. [42]
    K.C. Mills, A.B. Fox, Z. Li, R.P. Thackray, Ironmak. Steelmak. 32 (2005) 26–34.CrossRefGoogle Scholar
  43. [43]
    H. Zhao, W. Wang, L. Zhou, B. Lu, Y.B. Kang, Metall. Mater. Trans. B 45 (2014) 1510–1519.CrossRefGoogle Scholar
  44. [44]
    J.L. Li, Q.F. Shu, K.C. Chou, Can. Metall. Quart. 54 (2015) 85–91.CrossRefGoogle Scholar
  45. [45]
    J.L. Li, Q.F. Shu, X.M. Hou, K.C. Chou, ISIJ Int. 55 (2015) 830–836.CrossRefGoogle Scholar
  46. [46]
    J.W. Cho, K. Blazek, M. Frazee, H.B. Yin, J.H. Park, S.W. Moon, ISIJ Int. 53 (2013) 62–70.CrossRefGoogle Scholar
  47. [47]
    X.H. Huang, Ferrous metallurgical principle, 3rd ed., Metallurgical Industry Press, Beijing, 2002.Google Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina

Personalised recommendations