Determination method of high-temperature characteristics of iron-ore sintering based on n(Fe2O3)/n(CaO)

  • Zheng-wei Yu
  • Li-xin QianEmail author
  • Hong-ming LongEmail author
  • Yi-fan Wang
  • Qing-min Meng
  • Tie-jun Chun
Original Paper


The high-temperature characteristics of iron ores play important roles in optimizing ore proportion of sintering, which are tested by using iron-ore fines and analytical reagent CaO as raw materials. Two calculation methods of CaO addition amount based on binary basicity (basicity method) and n(Fe2O3)/n(CaO) (mole ratio method), respectively, were employed to evaluate the liquid phase fluidity (LPF) and the capability of calcium ferrite formation (CCFF) of iron ores. The results show that the rule of LPF of iron ores under the mole ratio method is different from that with basicity method. The LPF measured by basicity method has a linear positive correlation with the SiO2 content, and there is no linear relationship between LPF and Al2O3 content or mass loss on ignition, which are inconsistent with the results of the previous study. And the results of CCFF with low SiO2 content (< 3 wt.%) or high SiO2 content (> 7 wt.%) based on basicity method cannot reflect the true CCFF. The mole ratio method could successfully solve this problem by reducing the effect of CaO addition amount changes caused by SiO2 content of iron ores.


Iron-ore sintering High-temperature characteristics Liquid phase fluidity Calcium ferrite CaO addition amount 



This work was supported by the Key Project of National Natural Science Foundation of China (Grant No. U1660206) and the Projects of National Natural Science Foundation of China (Grant Nos. 51674002 and 51704009).


  1. [1]
    B.X. Su, J.L. Zhang, J. Chang, G.W. Wang, C.L. Wang, X.M. Che, Iron and Steel 46 (2011) No. 9, 22–28.Google Scholar
  2. [2]
    W. Wang, M. Deng, R.S. Xu, W.B. Xu, Z.L. Ouyang, X.B. Huang, Z.L. Xue, J. Iron Steel Res. Int. 24 (2017) 998–1006.CrossRefGoogle Scholar
  3. [3]
    J.Q. Yin, X.W. Lv, S.L. Xiang, C.G. Bai, B. Yu, ISIJ Int. 53 (2013) 1571–1579.CrossRefGoogle Scholar
  4. [4]
    L. Yao, S. Ren, X.Q. Wang, Q.C. Liu, J.L. Zhang, B.X. Su, Metall. Res. Technol. 114 (2017) 204.CrossRefGoogle Scholar
  5. [5]
    J. Zhang, X.M. Guo, Y.H. Qi, D.L. Yan, J. Iron Steel Res. Int. 22 (2015) 288–296.CrossRefGoogle Scholar
  6. [6]
    G.P. Luo, S.L. Wu, X.B. Jia, X.G. Duan, Z.Z. Hao, J. Iron Steel Res. 25 (2013) No. 10, 10–13.Google Scholar
  7. [7]
    J. Peng, L. Zhang, L.X. Liu, S.L. An, Metall. Mater. Trans. B 48 (2017) 538–544.CrossRefGoogle Scholar
  8. [8]
    D. Oliveira, S.L. Wu, Y.M. Dai, J. Xu, H. Chen, J. Iron Steel Res. Int. 19 (2012) No. 6, 1–5.CrossRefGoogle Scholar
  9. [9]
    J. Zhang, X.M. Guo, X. J. Huang, J. Iron Steel Res. Int. 19 (2012) No. 10, 1–6.CrossRefGoogle Scholar
  10. [10]
    S.L. Wu, Y. Liu, J.X. Du, K. Mi, H. Lin, J. Univ. Sci. Technol. Beijing 24 (2002) 254–257.Google Scholar
  11. [11]
    X.Y. Li, B.X. Su, L.G. Xia, J.L. Zhang, H.W. Guo, J. Iron Steel Res. Int. 22 (2015) 478–486.CrossRefGoogle Scholar
  12. [12]
    S.L. Wu, G.L. Zhang, S.G. Chen, B. Su, ISIJ Int. 54 (2014) 582–588.CrossRefGoogle Scholar
  13. [13]
    X.W. Lv, C.G. Bai, Q.Y. Deng, X.B. Huang, G.B. Qiu, ISIJ Int. 51 (2011) 722–727.CrossRefGoogle Scholar
  14. [14]
    S.L. Wu, B. Su, Y.H. Qi, Y. Li, B.B. Du, Chin. J. Eng. 40 (2018) 321–329.Google Scholar
  15. [15]
    L.H. Hsieh, ISIJ Int. 45 (2005) 551–559.CrossRefGoogle Scholar
  16. [16]
    Z.L. Chen, J.L. Zhang, Y.P. Zhang, Z.W. Yan, D. Wang, B. Gao, Iron and Steel 51 (2016) No. 12, 8–14.Google Scholar
  17. [17]
    S.L. Wu, Y.D. Pei, H. Chen, P. Peng, F. Yang, J. Univ. Sci. Technol. Beijing 30 (2008) 1095–1100.Google Scholar
  18. [18]
    M. Zhou, T. Jiang, S.T. Yang, X.X. Xue, Int. J. Miner. Process. 142 (2015) 125–133.CrossRefGoogle Scholar
  19. [19]
    S.L. Wu, J.C. Bei, J. Zhu, B. Su, W. Huang, J. Iron Steel Res. 27 (2015) No. 9, 7–13.CrossRefGoogle Scholar
  20. [20]
    Q. Wei, X.M. Mao, H.B. Shen, Baosteel Tech. Res. 11 (2017) No. 3, 7–11.Google Scholar
  21. [21]
    T.J. Chun, H.M. Long, J.X. Li, Sep. Sci. Technol. 50 (2015) 760–766.CrossRefGoogle Scholar
  22. [22]
    S.W. Kim, J.W. Jeon, I.K. Suh, S.M. Jung, Ironmak. Steelmak. 43 (2016) 500–507.CrossRefGoogle Scholar
  23. [23]
    G.L. Zhang, S.L. Wu, S.G. Chen, B. Su, Z.G. Que, C.G. Hou, Int. J. Miner. Metall. Mater. 21 (2014) 962–968.CrossRefGoogle Scholar
  24. [24]
    T.L. Li, C.Y. Sun, X.Y. Liu, S. Song, Q. Wang, Ironmak. Steelmak. 45 (2018) 755–763.CrossRefGoogle Scholar
  25. [25]
    H.M. Long, X.J. Wu, T.J. Chun, Z.X. Di, B. Yu, Metall. Mater. Trans. B 47 (2016) 2830–2836.CrossRefGoogle Scholar
  26. [26]
    W.Q. Huang, X.X. Zhang, Y.X. Liu, Z.W. Zhang, J. Iron Steel Res. 28 (2016) No. 7, 13–19.Google Scholar
  27. [27]
    X. Ding, X.M. Guo, Metall. Mater. Trans. B 46 (2015) 1742–1750.CrossRefGoogle Scholar
  28. [28]
    X. Ding, X.M. Guo, C.Y. Ma, K. Tang, Y.D. Zhao, Metall. Mater. Trans. B 46 (2015) 1146–1153.CrossRefGoogle Scholar
  29. [29]
    G.P. Luo, S.L. Wu, G.J. Zhang, Y.C. Wang, J. Iron Steel Res. Int. 20 (2013) No. 3, 18–23.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.School of Metallurgical EngineeringAnhui University of TechnologyMa’anshanChina
  2. 2.Key Laboratory of Metallurgical Emission Reduction and Resources Recycling (Anhui University of Technology)Ministry of EducationMa’anshanChina

Personalised recommendations