A united tension/compression asymmetry micro-mechanical model for nickel-base single-crystal alloys

  • Jian-feng Xiao
  • Hai-tao Cui
  • Hong-jian ZhangEmail author
  • Wei-dong Wen
Original Paper


In recent years, the micro-deformation mechanisms of the tension/compression behavior for nickel-base single-crystal superalloys have been studied extensively and general agreements have been derived. Based on these researches, a new model called united tension/compression asymmetry micro-mechanical model (UTCAM) has been proposed, which can effectively estimate the initial yield strength of nickel-base single-crystal (SC) superalloys under different loading directions. Considering the combined effects of octahedral slip system and cubic slip system, slip control factor is introduced in the UTCAM to determine the type of the open slip system of nickel-base single-crystal superalloys during deformation, thus making this model cover a rather wide range of application. Furthermore, the UTCAM is applied to hot tension and compression tests of three typical nickel-base SC superalloys (PWA1480-593 °C, RENE N4-760 °C and DD407-760 °C). The predicted initial yield strengths of the nickel-base SC superalloys are in good agreement with the experimental results, and the UTCAM proves to be effective.


Nickel-base single-crystal superalloy Initial yield strength Tension/compression asymmetry Micro-mechanical model 



This research has been supported by National Natural Science Foundation of China (51205190), the Fundamental Research Funds for the Central Universities (No. NS2016026), the Aeronautical Power Science Fund Project (6141B090317) and the Innovation Fund of Jiangsu Province, China (KYLX-0304).


  1. [1]
    R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
  2. [2]
    Z.P. Hao, F.F. Ji, Y.H. Fan, J.Q. Lin, X.Y. Liu, S. Gao, J. Alloy. Compd. 728 (2017) 854–862.CrossRefGoogle Scholar
  3. [3]
    D. Barba, E. Alabort, D. Garcia-Gonzalez, J.J. Moverare, R.C Reed, A. Jérusalem, Int. J. Plast. 105 (2018) 74–98.CrossRefGoogle Scholar
  4. [4]
    M.K. Samal, Proc. Inst. Mech. Eng. Part C 231 (2017) 2621–2635.CrossRefGoogle Scholar
  5. [5]
    A. Vattré, B. Devincre, A. Roos, Acta Mater. 58 (2009) 1938–1951.CrossRefGoogle Scholar
  6. [6]
    H. Zhang, W. Wen, H. Cui, Mater. Sci. Eng. A 504 (2009) 99–103.CrossRefGoogle Scholar
  7. [7]
    B. Devincre, P. Veyssière, L.P. Kubin, G. Saada, Philos. Mag. A 75 (1997) 1263–1286.CrossRefGoogle Scholar
  8. [8]
    M. Shenoy, Y. Tjiptowidjojo, D. McDowell, Int. J. Plast. 24 (2008) 1694–1730.CrossRefGoogle Scholar
  9. [9]
    R. Hill, Proc. R. Soc. A 193 (1948) 281–297.Google Scholar
  10. [10]
    W.F. Hosford, The mechanics of crystals and textured polycrystals, Oxford University Press, New York, 1993.Google Scholar
  11. [11]
    F. Barlat, D.J. Lege, J.C. Brem, Int. J. Plast. 7 (1991) 693–712.CrossRefGoogle Scholar
  12. [12]
    L. Chen, W. Wen, H. Cui, Mater. Des. 41 (2012) 192–197.CrossRefGoogle Scholar
  13. [13]
    L. Chen, W. Wen, H. Cui, H. Zhang, Y. Xu, Chin. J. Aeronaut. 26 (2013) 801–806.CrossRefGoogle Scholar
  14. [14]
    S. Takeuchi, E. Kuramoto, Acta Metall. 21 (1973) 415–425.CrossRefGoogle Scholar
  15. [15]
    V. Paidar, D.P. Pope, V. Vitek, Acta Metall. 32 (1984) 435–448.CrossRefGoogle Scholar
  16. [16]
    P.B. Hirsch, Scripta Metall. et Mater. 25 (1991) 1725–1730.CrossRefGoogle Scholar
  17. [17]
    C. Lall, S. Chin, D.P. Pope, Metall. Trans. A 10 (1979) 1323–1332.CrossRefGoogle Scholar
  18. [18]
    R.V. Miner, R.C. Voigt, J. Gayda, T.P. Gabb, Metall. Trans. A 17 (1986) 491–496.CrossRefGoogle Scholar
  19. [19]
    P. Li, B.M. Zhou, Y.Z. Zhou, J.G. Li, T. Jin, X.F. Sun, Z.F. Zhang, Philos. Mag. 94 (2014) 2426–2446.CrossRefGoogle Scholar
  20. [20]
    Z. Yue, C. Zheng, J. Mech. Strength 15 (1993) 53–58.Google Scholar
  21. [21]
    D.M. Shah, D.N. Duhl, in: Proceeding of the Fifth International Symposium on Superalloys, ASM, Metals Park, Ohio, 1984, pp. 105–114.Google Scholar
  22. [22]
    Y. Umakoshi, D.P. Pope, V. Vitek, Acta Metall. 32 (1984) 449–456.CrossRefGoogle Scholar
  23. [23]
    A.M. Cuitińo, M. Ortiz, Mater. Sci. Eng. A 170 (1993) 111–123.CrossRefGoogle Scholar
  24. [24]
    B. Fedelich, Comp. Mater. Sci. 16 (1999) 248–258.CrossRefGoogle Scholar
  25. [25]
    A.J. Wang, R.S. Kumar, M.M. Shenoy, D.L. McDowell, Int. J. Multiscale Comput. Eng. 4 (2006) 663–692.CrossRefGoogle Scholar
  26. [26]
    G. Bande, J.A. Nemes, J. Eng. Mater. Technol. 127 (2005) 119–129.CrossRefGoogle Scholar
  27. [27]
    L.T. Dame, D.C. Stouffer, Inelastic deformation of metals: models, mechanical properties, and metallurgy, University of Cincinnati, Cincinnati, Ohio, 1986.Google Scholar
  28. [28]
    A. Ma, F. Roters, Acta Mater. 52 (2004) 3603–3612.CrossRefGoogle Scholar
  29. [29]
    L.F. Zhang, P. Yan, J.C. Zhao, Q. Zeng, F.K. Han, J. Iron Steel Res. Int. 23 (2011) No. 12, 54–59.Google Scholar
  30. [30]
    T.P. Gabb, J. Gayda, R.V. Miner, Metall. Trans. A 17 (1986) 497–505.CrossRefGoogle Scholar

Copyright information

© China Iron and Steel Research Institute Group 2019

Authors and Affiliations

  1. 1.Jiangsu Province Key Laboratory of Aerospace Power System, State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Energy & Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations