A united tension/compression asymmetry micro-mechanical model for nickel-base single-crystal alloys
- 2 Downloads
Abstract
In recent years, the micro-deformation mechanisms of the tension/compression behavior for nickel-base single-crystal superalloys have been studied extensively and general agreements have been derived. Based on these researches, a new model called united tension/compression asymmetry micro-mechanical model (UTCAM) has been proposed, which can effectively estimate the initial yield strength of nickel-base single-crystal (SC) superalloys under different loading directions. Considering the combined effects of octahedral slip system and cubic slip system, slip control factor is introduced in the UTCAM to determine the type of the open slip system of nickel-base single-crystal superalloys during deformation, thus making this model cover a rather wide range of application. Furthermore, the UTCAM is applied to hot tension and compression tests of three typical nickel-base SC superalloys (PWA1480-593 °C, RENE N4-760 °C and DD407-760 °C). The predicted initial yield strengths of the nickel-base SC superalloys are in good agreement with the experimental results, and the UTCAM proves to be effective.
Keywords
Nickel-base single-crystal superalloy Initial yield strength Tension/compression asymmetry Micro-mechanical modelNotes
Acknowledgements
This research has been supported by National Natural Science Foundation of China (51205190), the Fundamental Research Funds for the Central Universities (No. NS2016026), the Aeronautical Power Science Fund Project (6141B090317) and the Innovation Fund of Jiangsu Province, China (KYLX-0304).
References
- [1]R.C. Reed, The superalloys: fundamentals and applications, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
- [2]Z.P. Hao, F.F. Ji, Y.H. Fan, J.Q. Lin, X.Y. Liu, S. Gao, J. Alloy. Compd. 728 (2017) 854–862.CrossRefGoogle Scholar
- [3]D. Barba, E. Alabort, D. Garcia-Gonzalez, J.J. Moverare, R.C Reed, A. Jérusalem, Int. J. Plast. 105 (2018) 74–98.CrossRefGoogle Scholar
- [4]M.K. Samal, Proc. Inst. Mech. Eng. Part C 231 (2017) 2621–2635.CrossRefGoogle Scholar
- [5]A. Vattré, B. Devincre, A. Roos, Acta Mater. 58 (2009) 1938–1951.CrossRefGoogle Scholar
- [6]H. Zhang, W. Wen, H. Cui, Mater. Sci. Eng. A 504 (2009) 99–103.CrossRefGoogle Scholar
- [7]B. Devincre, P. Veyssière, L.P. Kubin, G. Saada, Philos. Mag. A 75 (1997) 1263–1286.CrossRefGoogle Scholar
- [8]M. Shenoy, Y. Tjiptowidjojo, D. McDowell, Int. J. Plast. 24 (2008) 1694–1730.CrossRefGoogle Scholar
- [9]R. Hill, Proc. R. Soc. A 193 (1948) 281–297.Google Scholar
- [10]W.F. Hosford, The mechanics of crystals and textured polycrystals, Oxford University Press, New York, 1993.Google Scholar
- [11]F. Barlat, D.J. Lege, J.C. Brem, Int. J. Plast. 7 (1991) 693–712.CrossRefGoogle Scholar
- [12]L. Chen, W. Wen, H. Cui, Mater. Des. 41 (2012) 192–197.CrossRefGoogle Scholar
- [13]L. Chen, W. Wen, H. Cui, H. Zhang, Y. Xu, Chin. J. Aeronaut. 26 (2013) 801–806.CrossRefGoogle Scholar
- [14]S. Takeuchi, E. Kuramoto, Acta Metall. 21 (1973) 415–425.CrossRefGoogle Scholar
- [15]V. Paidar, D.P. Pope, V. Vitek, Acta Metall. 32 (1984) 435–448.CrossRefGoogle Scholar
- [16]P.B. Hirsch, Scripta Metall. et Mater. 25 (1991) 1725–1730.CrossRefGoogle Scholar
- [17]C. Lall, S. Chin, D.P. Pope, Metall. Trans. A 10 (1979) 1323–1332.CrossRefGoogle Scholar
- [18]R.V. Miner, R.C. Voigt, J. Gayda, T.P. Gabb, Metall. Trans. A 17 (1986) 491–496.CrossRefGoogle Scholar
- [19]P. Li, B.M. Zhou, Y.Z. Zhou, J.G. Li, T. Jin, X.F. Sun, Z.F. Zhang, Philos. Mag. 94 (2014) 2426–2446.CrossRefGoogle Scholar
- [20]Z. Yue, C. Zheng, J. Mech. Strength 15 (1993) 53–58.Google Scholar
- [21]D.M. Shah, D.N. Duhl, in: Proceeding of the Fifth International Symposium on Superalloys, ASM, Metals Park, Ohio, 1984, pp. 105–114.Google Scholar
- [22]Y. Umakoshi, D.P. Pope, V. Vitek, Acta Metall. 32 (1984) 449–456.CrossRefGoogle Scholar
- [23]A.M. Cuitińo, M. Ortiz, Mater. Sci. Eng. A 170 (1993) 111–123.CrossRefGoogle Scholar
- [24]B. Fedelich, Comp. Mater. Sci. 16 (1999) 248–258.CrossRefGoogle Scholar
- [25]A.J. Wang, R.S. Kumar, M.M. Shenoy, D.L. McDowell, Int. J. Multiscale Comput. Eng. 4 (2006) 663–692.CrossRefGoogle Scholar
- [26]G. Bande, J.A. Nemes, J. Eng. Mater. Technol. 127 (2005) 119–129.CrossRefGoogle Scholar
- [27]L.T. Dame, D.C. Stouffer, Inelastic deformation of metals: models, mechanical properties, and metallurgy, University of Cincinnati, Cincinnati, Ohio, 1986.Google Scholar
- [28]A. Ma, F. Roters, Acta Mater. 52 (2004) 3603–3612.CrossRefGoogle Scholar
- [29]L.F. Zhang, P. Yan, J.C. Zhao, Q. Zeng, F.K. Han, J. Iron Steel Res. Int. 23 (2011) No. 12, 54–59.Google Scholar
- [30]T.P. Gabb, J. Gayda, R.V. Miner, Metall. Trans. A 17 (1986) 497–505.CrossRefGoogle Scholar